

Documentation for the class BMPImage

Files: BMPEdit24.h, BMPEdit24.cpp

The files BMPEdit24.h/.cpp contain definitions and member functions for the BMPImage class. The BMPImage class provides data structures and functions necessary for the manipulation of 24-bit RGB bitmaps (16 million color pallette). This class deals ONLY with 24 Bit RGB bitmaps and will output error messages if other files are opened.

DATA MEMBERS of BMPImage:

1. int saved;				

2. int altered;			

3. int EDIT_FUNCTION;		

4. CDC * temp_dc;

1. Flag indicating if the image data in this instance of class BMPImage has been saved to a file. Set either to TRUE (1) or FALSE (0).

2. Flag indicating if the image data has been altered. Set either to TRUE (1) or FALSE (0).

3. Flag indicating which image editing function (see file ImgEditJob_ids.h) needs to be executed. Set to an integer value greater than or equal to 0.

4. A Windows device context, located in memory, that contains image pixels as they are edited and redrawn. This DC serves as a backup for the CPaintDC on which the image is actually drawn and visible on the screen. The image pixels stored on this DC are not stored in serial fashion as in an array, but in true physical 2-D format.

I. Overview of the BMPImage Bitmap data structure.

The BMPImage class contains the necessary data structures and member functions to create a

working image editor program in Windows. The data structures used to hold image data from bitmap files will be described as follows:

1. Bitmap File Header

2. Bitmap Info Header

3. 2-dimensional array of pixel data

--

1. The Windows Bitmap image file format (24-bit) consists of 2 separate headers and the image data. The 2 headers are the file header and the info header. The file header basically marks the file in question as a bitmap file, using the integer 19778, which reads as the bytes 'BM' when the file is viewed in hexadecimal (BM= BitMap....). The file header also contains the size of the file header, two "reserved" spaces for comments (almost never used), and a value that gives the number of bits remaining before the actual image data begins. The types

and names of the file header data objects are given as follows:

short 	fhType;

DWORD 	fhSize;

short 	fhReserved1;

short 	fhReserved2;

DWORD 	fhOffBits;

Note that the type "short" in Win32 is 2 bytes in length, and DWORD is a "double word" and is

a 32-bit unsigned char.

2. The Bitmap Info Header contains data crucial to the reading of bitmap data. The types and names of info header variables are as follows:

DWORD	 ihSize;

LONG	 	 ihWidth;

LONG	 	 ihHeight;

WORD	 ihPlanes;

WORD	 ihBitCount;

DWORD 	ihCompression;

DWORD 	ihSizeImage;

LONG 	ihXPelsPerMeter;

LONG 	ihYPelsPerMeter;

DWORD 	ihClrUsed;

DWORD 	ihClrImportant;

ihSize is the size in bytes of the image. ihWidth and ihHeight represent the width and height in pixels of the actual image. ihPlanes shows the number of planes present in the bitmap (usually 1). ihBitCount indicates the number of bits representing each pixel, ie., in a 24 bit bitmap, ihBitCount = 24. ihCompression indicates if a bitmap is compressed or not (1=TRUE, 0=FALSE). ihSizeImage indicates the area of the image in pixels. ihXPelsPerMeter and ihYPelsPerMeter represent the pixel resolution in Pixels-Per-Meter. ihClrUsed indicates the number of colors used by the image, and ihClrImportant indicates which colors are crucial to proper displaying of the bitmap image.

3. The two-dimensional array of pixels is intended to mimic the actual image structure. The dimensions of the array are the values stored in ihWidth and ihHeight. The 2D array is defined as follows:

typedef CArray<COLORREF, COLORREF&> CPixelArray;

		

CPixelArray ScanLine;

	

CArray<CPixelArray, CPixelArray&> ScanLineIndex;

The first statement defines an MFC CArray type consisting of COLORREF variables. The "typedef" makes the CArray declaration a valid data type, which is necessary to create an array of COLORREFs. The MFC data type COLORREF is a 32-bit integer that contains the RGB values of a given pixel. In hexadecimal, the COLORREF value is structured like this: 0x00bbggr, where b represents blue color data, g represents green, The array ScanLine is an array of COLORREFs of type CPixelArray, and represents a single horizontal line in the bitmap image. The array ScanLineIndex is an index of all of a bitmap's scanlines, the number of which being equal to ihHeight.

II. BMPImage MEMBER FUNCTIONS

The member functions of class BMPImage, as of 20 April 2002 are as follows:

1. int BMPRead(char ImgFile[80]);

2. void BMPWrite(char ImgFile[80]);

3. void BMPCopy(BMPImage * newImage);

4. void BMPDraw(CDC * dc);

5. void BMPBrightnessUp(CDC * dc);

6. void BMPBrightnessDown(CDC * dc);

7. void BMPGrayScale(CDC * dc);

8. void BMPNegative(CDC * dc);

9. void BMPContrastUp(CDC * dc);

10. void BMPContrastDown(CDC * dc);

11. void BMPMirror(CDC * dc);

12. void BMPRedTintUp(CDC * dc);

13. void BMPRedTintDown(CDC * dc);

14. void BMPGreenTintUp(CDC * dc);

15. void BMPGreenTintDown(CDC * dc);

16. void BMPBlueTintUp(CDC * dc);

17. void BMPBlueTintDown(CDC * dc);

18. void BMPRotate90(CDC * dc)

19. void BMPZoomIn(CDC * dc);

20. void BMPZoomOut(CDC * dc);

21. int BMPGetStartX(LONG xwidth);

22. int BMPGetStartY(LONG yheight);

1. BMPRead(char ImgFile[80]):

Parameters: An array of chars (max 80 chars) that contains the filename/path

Input: Image data from a 24-bit Windows bitmap file

Output: Image data to file header and image data structures

	

Return:	0 = File read successful

	-1 = Error opening File

	-2 = File is NOT a bitmap

	-3 = File is NOT 24-bit RGB

	-4 = image data is COMPRESSED

The function BMPRead(char ImgFile[80]) reads all data from a bitmap file and places the data in the appropriate data structures. A character string, max. 80 characters, representing the name of the file to be opened is passed in, and the function returns an integer to indicate whether the read was successful or not. A -1 returned indicates that the file could not be opened. A -2 indicates that the file is not a bitmap. A -3 indicates that the file is a bitmap, but it is NOT 24-bit RGB. A -4 indicates that the bitmap is compressed, and therefore cannot be processed. The function begins its operations by opening the file to read from. If the file cannot be opened, a Message Box is displayed indicating the error, and the program returns -1 to alert the Main Window. If the file can be read, the bitmap file header is read first. Each variable present in the header must be read separately, and not part of a struct or class object. The data can be read in "lump-sum" form if and only if the file was CREATED using structs or class objects. Since this cannot be guaranteed in most cases, the variables will have to be read individually. The same is done to read the info header.

To read the actual pixel data, the two-dimensional pixel array is first initialized as follows:

ScanLineIndex.SetSize(ihHeight);

	for(int i=0; i<ihHeight; i++){

		ScanLineIndex[i].SetSize(ihWidth);

	}

First, the array ScanLineIndex has its size set to the bitmap's height in pixels (ihHeight).

Then, each ScanLine in ScanLineIndex has its size set to the bitmap's width in pixels

(ihWidth). Now the array is ready to receive the data. The pixel data is read one byte at a

time into three separate variables. Then these three variables are converted into a COLORREF variable via the function RGB(). The COLORREF is then stored in the array. The array data appears in the array in the same fashion as in the file. That is, the image data is stored upside-down.

If the reading of the file is completely successful, the function returns 0 so that the Main

Window can continue its operations.

2. BMPWrite(char ImgFile[80], CDC * dc):

Parameters: char outputfile[80] -- string containing the filename to write to

	 CDC * dc -- Windows DC from which to get the pixels

Input:	Image data (raw pixels and header variables) from a BMPImage object.

Output: Binary data to file

Return: None

This function writes bitmap data currently contained in "this" instance of the BMPImage class to the file name specified. The parameters are a filename (80 char array) and a pointer to a Windows DC. The data is written in proper order, the file header being first, then the info header, then the pixel data contained in temp_dc. The data is written using the basic function istream::write((char *)c, sizeof(c)).

3. BMPCopyDC(CDC *s_dc, CDC *d_dc):

Parameters: CDC * s_dc -- Source DC

 CDC * d_dc -- Destination DC

Input: Pixels from s_dc

Output: Pixels are drawn on d_dc

Return: None.

This function copies the data from the source dc (s_dc) to the destination DC (d_dc) by accessing each pixel in the source and drawing that pixel in the destination DC in the same (x, y) position.

4. BMPDraw(CDC * dc)

Parameters: CDC * dc -- pointer to the DC on which to draw the image

Input: pixel data in the form of type COLORREF from ScanLineIndex

Output: Pixels are drawn on the specified DC pointed to by CDC * dc

Return: None.

This function draws the pixel data onto the Windows "paint" area. To draw the image, the function first determines the center of the window using functions BMPGetStartX and BMPGetStartY so that the image is centered on the screen. The image is then drawn on the screen using the image data stored in ScanLineIndex. Noting that the bitmap data are stored upside-down in the array, the array is accessed in BMPDraw() starting with the last scanline and working up to the first in the array. The pixels are also drawn onto temp_dc, but the coordinates represent the actual positions in the image given that the image does not need to be centered in temp_dc.

5. BMPBrightnessUp():

Parameters: CDC * dc -- pointer to Windows device context

Input: Pixels from temp_dc

Output: Pixels are drawn on DC pointed to by CDC * dc

Return: None.

This function alters the pixel data so that the image appears brighter. This is done by "scaling" the pixels up by a constant factor. In this function, each pixel in temp_dc is visited in turn and a value of 10 is added to each RGB value, if the value is less than 245 (255-10). This ensures that no RGB value exceeds 255, as that would cause integer wrapping and foul the image. After a pixel is adjusted, it is immediately drawn on temp_dc and dc (pointer to Main Window's paint device context).

6. The function BMPBrightnessDown() is the same as the previous function, except that it decreases each RGB value by 10, if the result is greater than zero. This has the effect of

decreasing the brightness of an image.

7. BMPGrayScale()

Parameters: CDC * dc -- pointer to Windows device context

Input: Pixels from temp_dc

Output: Pixels are drawn on DC pointed to by CDC * dc and on temp_dc

Return: None.

This function converts a color RGB image into a black-and-white image. This is achieved

by averaging a pixel's RGB components, and replacing each RGB component for a given pixel with the average of the RGB components. An individual pixel is obtained from temp_dc, changed to its grayscale equivalent, and redrawn back to temp_dc and the main window's DC.

8. BMPNegative()

	

Parameters: CDC * dc -- pointer to Windows device context

Input: Pixels from temp_dc

Output: Pixels are drawn on DC pointed to by CDC * dc and back to temp_dc

Return: None.

This function changes an image to its negative. This is done by taking each RGB component of a pixel and replacing it with the result of (255-component value). This results in light colors becoming dark and dark colors becoming light, to be general. After a pixel is obtained from temp_dc and altered, it is redrawn back to temp_dc and on the Main Window's DC

9. BMPContrastUp()

Parameters: CDC * dc -- pointer to Windows device context

Input: Pixels from temp_dc

Output: Pixels are drawn on DC pointed to by CDC * dc and back to temp_dc

Return: None.

This function increases the contrast between light and dark colors. It first calculates the average luminance of all the image's pixels. Luminance is defined as follows: L = .30r + .59g + .11b where r, g, and b represent Red, Green and Blue pixel components respectively. After the average luminance is determined, each pixel's luminance is compared to the mean luminance. If the component's value is less than the mean,

it is decreased by 10 (provided it is greater than 10). If the component's value is greater

than that of the mean, it is increased by 10 (provided it is 245 or less). After a pixel is altered, it is redrawn on temp_dc and the Main Window's DC

10. BMPContrastDown()

This function is similar to #9, except each pixel component value is increased if the pixel's luminance is less than the mean luminance and decreased if it is greater. This function causes an image to lose its contrast.

11. BMPMirror()

Parameters: CDC * dc -- pointer to Windows DC

Input: pixels from temp_dc

Output: mirror image drawn on temp_dc and the Main Window DC

Return: NONE

This function converts an image into a mirror of itself. To accomplish this, each pixel with positon (x, y) in the image is swapped with the pixel at position (ihWidth - x, y). In each scan line, therefore, the pixels from positon 0 to position ihWidth/2 get moved to the other half of the line, and the pixels from ihWidth/2 to ihWidth get placed in positions 0 through ihWidth/2.

THE TINT CONTROL FUNCTIONS: 12, 13, 14, 15, 16, 17.

These functions serve to control the tint of an image. In other words, they adjust the prevalence or absence of a single color within the image. There are six total functions, two for each RGB color red, green, and blue. The BMPRedTintUp() function for instance, causes the red pixel component value in each pixel to be increased by 10, and its counterpart BMPRedTintDown() reduces the value of the red component in each pixel. The same is possible for the green and blue components. With these six functions, a tint control feature can be created that can adjust the intensity of the red, green, or blue colors in an image.

18. BMPRotate90(CDC * dc)

Parameters: CDC * dc -- Pointer to Windows Device Context

	

Input: Image pixels from temp_dc

Output: Draws rotated image on temp_dc, Main Window's DC

Return: None

This function takes a pixel from temp_dc and redraws it in a location on a new DC such that the completed image is rotated 90 degrees to the left. The function uses two sets of indexes: one for the original image (which drives the for loop), and one for the rotated image. In the inner for loop, the height of the original bitmp is used as the index, and it is decremented from ihHeight-1, whereas the positon of pixel placement on the rotated image is changed by width first. (in rotation, height = width, etc.).

19. BMPZoomIn(CDC * dc)

Parameters:	CDC * dc, pointer to windows device context

Input:	Pixels from temp_dc (copied to old_img_dc)

Output: Maginfied image drawn onto temp_dc and dc, bitmap width and height 	updated.	

This function redraws an image 10% larger than its previous size. The dimensions are increased by 10% each. On each scan line, every 10th pixel is drawn a second time in position (x+1, y). Every 10th scan line is repeated at position (x, y+1). The image is drawn onto temp_dc, and data input is from a temporary dc that has the image copied into it. The dimensions of the image are also updated to reflect the resize.

20. BMPZoomOut(CDC *dc)

This function performs the opposite of # 19 by skipping over every 10th pixel in a scan line and skipping every 10th scan line. This reduces the size of the image by 10%

21. BMPGetStartX(LONG xwidth);

This function uses data about the main window to calculate where the starting x coordinate should be when drawing an image in a window. The width of the bitmap to be drawn is passed as a parameter.

22 BMPGetStartY(LONG ywidth);

The same as 21, except the y-coordinate is calculated.	

	

