Laura Weiland

Page 2

CCR Deadlock

Project Description: Implement a model to the Train Operating System (TOS) that manages the deadlock problem for the Computer Controlled Railroad (CCR).

· Solution will extend of redesign the TOS that currently prevents collisions.

· Detect deadlock and report it.

· Recover from deadlock by removing processes (trains).

· Recover from deadlock by removing resources (track).

· Avoid a deadlock state when possible.

· Prevent deadlock from occurring.

· All solutions will crate a log file recording the state of the system at each step taken for recovery, avoidance, etc.

· Modify the TOS initialization module so that it will prevent a start-up that is deadlocked, or identify that it is initially deadlocked.

Deadlock Review:

Four conditions necessary for deadlock:

1. Mutual Exclusion – Only one process at a time can use the resource.

2. Hold and Wait – Every process is holding a resource that another wants and waiting for another that someone is holding.

3. No Preemption – Resources cannot be forcefully taken away from processes.

4. [image: image1.png]s—1

Situation
- Deadlocked: train A and train B
-Blocked: train C.

Circular Waiting

Deadlock Detection:

[image: image2.png]Next PC

TrainID_(Requested)
16 7
]]
2 El
B4 0

DEADLOCK!

Deadlock only happens when trains are blocked, thus each time a train is moved from the list of active trains to blocked trains, the system is checked for deadlock. The blocked trains (processes) and their requested photocells (resources) are put into an array indexed by the photocell the train currently holds. The array is checked for a circular pattern.

Deadlock Recovery Review:

In OS, there are two ways to recover from deadlock, to remove an offending process (train) or resource from process (turnout). In trying to model CCR after an actual railroad, one cannot simply remove a train from the track. So, I have focused my time finding a consistent way to remove resources from the deadlocked system of trains.

Deadlock Recovery Ideas:

[image: image3.png]Train-> <Train | _ Train-> < Train Train-> < Train

rain

Casel Case? Cased

In recovering from deadlock, I would like to remove one of the trains from the circular wait. To do this, a train needs to take a temporary detour from its original path so that a resource can be freed, and thus breaking the circular wait. To do this, I will take advantage of the many turnouts on the layout and temporarily reroute the train down an unused section of track, away from the path of the other train(s).

In comparing the two situations above, the first situation contains the least amount of implementation overhead. Thus, redirecting a train from the stem of the ‘Y’ into one of its branches would be the optimal solution. While this is may be optimal, it is not always possible.

[image: image4.png]Train-> Train->

o

Situation 1 Situation 2

The situation in Case 1 happens quite regularly on our layout. Thus, one of the trains is found at the stem of the ‘Y’ and our optimal recovery method can be applied. You do need to be careful however, because the branch in Case 1 that is open might have a blocked train occupying it. There is one area on our layout in which Case 2 occurs. The train on the left is set up for the optimal recovery method again if another train does not occupy the other branch. There are two instances of Case 3, where neither train is set up for an optimal recovery method. Case 4 represents the deadlock at infinity. Here, only one train can back up and in both cases, the train will be backing up from a branch of the ‘Y’. Looking at the turnouts directly surrounding the deadlocked trains, there is no single recovery solution that will work in all instances. Another option would be to move a train that was participating in deadlock around the track until you come to a chosen situation, however, you’ll run the risk of running into other trains in transit to that turnout. The case where three trains are in deadlock can only occur around the two outer rings of the layout. In all cases, there is at least one train that is sitting at the stem of the ‘Y’, thus falling into Case 1.

Optimally, I would be looking for a single recovery pattern that would fit all cases, but I don’t think that can happen. I have then considered putting into effect a hierarchy of recovery patterns, trying the most optimal solution first and working your way down the chain of command until deadlock has been resolved. This was the deadlock recovery solution that ran through my mind. I would welcome any ideas for another way to recover from deadlock that would support a more general solution.

Future:

· Recovery from deadlock – 2 weeks

· Deadlock avoidance – 2 weeks

· Initial Idea: There are no more than 2 photocells between any two turnouts. Thus, before you leave a turnout situation, look ahead to the next turnout to see if another train is in the extended section of track. If so, pull off at the current turnout and wait for the other train to pass before continuing.

· Initialization and Deadlock – 1 day

· Log file manipulation – 1 day

· Misc. items that come up – whatever time is left! :)

