



© Apple Computer, Inc. 2001

May 2001



P r e l i m i n a r y
D o c u m e n t a t i o n

Audio and MIDI
on Mac OS X

.

 Includes “Document Revision History” (page 115)



Apple Computer, Inc.
© 2001 Apple Computer, Inc.
All rights reserved.
No part of this publication or the
software described in it may be
reproduced, stored in a retrieval system,
or transmitted, in any form or by any
means, mechanical, electronic,
photocopying, recording, or otherwise,
without prior written permission of
Apple Computer, Inc., except in the
normal use of the software or to make a
backup copy of the software or
documentation. The same proprietary
and copyright notices must be affixed to
any permitted copies as were affixed to
the original. This exception does not
allow copies to be made for others,
whether or not sold, but all of the
material purchased (with all backup
copies) may be sold, given, or loaned to
another person. Under the law, copying
includes translating into another
language or format. You may use the
software on any computer owned by
you, but extra copies cannot be made for
this purpose.
Printed in the United States of America.
The Apple logo is a trademark of
Apple Computer, Inc.
Use of the “keyboard” Apple logo
(Option-Shift-K) for commercial
purposes without the prior written
consent of Apple may constitute
trademark infringement and unfair
competition in violation of federal and
state laws.
No licenses, express or implied, are
granted with respect to any of the
technology described in this book.
Apple retains all intellectual property
rights associated with the technology
described in this book. This book is
intended to assist application
developers to develop applications only
for Apple-labeled or Apple-licensed
computers.
Every effort has been made to ensure
that the information in this manual is
accurate. Apple is not responsible for
printing or clerical errors.

Apple Computer, Inc.
1 Infinite Loop
Cupertino, CA 95014
408-996-1010

Apple, the Apple logo, LaserWriter, and
Macintosh are trademarks of Apple
Computer, Inc., registered in the United
States and other countries.
Adobe, Acrobat, and PostScript are
trademarks of Adobe Systems
Incorporated or its subsidiaries and may
be registered in certain jurisdictions.

Simultaneously published in the United
States and Canada.

LIMITED WARRANTY ON MEDIA AND
REPLACEMENT

If you discover physical defects in the
manual or in the media on which a software
product is distributed, ADC will replace the
media or manual at no charge to you
provided you return the item to be replaced
with proof of purchase to ADC.

ALL IMPLIED WARRANTIES ON THIS
MANUAL, INCLUDING IMPLIED
WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR
PURPOSE, ARE LIMITED IN DURATION
TO NINETY (90) DAYS FROM THE DATE
OF THE ORIGINAL RETAIL PURCHASE
OF THIS PRODUCT.

Even though Apple has reviewed this
manual, APPLE MAKES NO WARRANTY
OR REPRESENTATION, EITHER EXPRESS
OR IMPLIED, WITH RESPECT TO THIS
MANUAL, ITS QUALITY, ACCURACY,
MERCHANTABILITY, OR FITNESS FOR A
PARTICULAR PURPOSE. AS A RESULT,
THIS MANUAL IS SOLD “AS IS,” AND
YOU, THE PURCHASER, ARE ASSUMING
THE ENTIRE RISK AS TO ITS QUALITY
AND ACCURACY.

IN NO EVENT WILL APPLE BE LIABLE
FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL
DAMAGES RESULTING FROM ANY
DEFECT OR INACCURACY IN THIS
MANUAL, even if advised of the possibility
of such damages.

THE WARRANTY AND REMEDIES SET
FORTH ABOVE ARE EXCLUSIVE AND IN
LIEU OF ALL OTHERS, ORAL OR
WRITTEN, EXPRESS OR IMPLIED. No
Apple dealer, agent, or employee is
authorized to make any modification,
extension, or addition to this warranty.

Some states do not allow the exclusion or
limitation of implied warranties or liability
for incidental or consequential damages, so
the above limitation or exclusion may not
apply to you. This warranty gives you
specific legal rights, and you may also have
other rights which vary from state to state.

3

Contents

Chapter 1

Audio and MIDI on Mac OS X

7

Apple’s Objectives 7
Developer Resources 7

Core Audio Overview 8
Introduction 8
Goals 9
The Audio Hardware Abstraction Layer (HAL) 10
AudioUnits.framework 10
AudioToolbox.framework 11
MIDI Services 11

Chapter 2

The Audio Hardware Abstraction Layer (HAL)

13

Overview 13
Design Goals 14
The AudioHardware API 14

The Audio Device as a Unit of Encapsulation 14
Format Information 16

Properties 16
Global Properties 16
Getting a List of Devices –– a Code Example 16

Device Properties 17
Setting Channel Volume –– a Code Example 18

Reference 19
AudioDevice 22

Chapter 3

AudioUnits

31

Overview 31
The Audio Unit Framework 31
The AudioUnit API 32

Key Points 32

4

Audio Unit State 33
AudioUnit Sources and Destinations 34
AudioUnit Properties 34
AudioUnit Parameters 35
I/O Management 35

The “Pull” I/O Model 35
The MusicDevice API 36
The AudioOutputUnit API 37

Reference 37

Chapter 4

Audio Toolbox

49

Overview 49
The AUGraph 49
AUGraph APIs 50

AUGraph State 50
The MusicPlayer API 51

Reference 53

Chapter 5

MIDI System Services

75

Overview 75
Goals 75
Implementation 76
MIDI Drivers 77
MIDI Hardware 77
CoreMIDI Objects 78
MIDIPacketList 78

Iterating Through a MIDIPacketList 79
Using MIDIReadProc 80

Reference 80

5

Chapter 6

Core Audio Utilities

107

Index 113

Appendix A

Document Revision History

115

6

7

Preliminary © Apple Computer, Inc 5/29/01

C H A P T E R 1

Audio and MIDI on Mac OS X 1Figure 1-0
Listing 1-0
Table 1-0

Welcome to audio and MIDI on Mac OS X.

Mac OS X now comes with a new audio and MIDI architecture that has been
designed completely from the ground up. This new software architecture
includes a comprehensive set of audio and MIDI services that are available to
hardware and application developers.

If you are interested in client or application usage of these services, or in audio
authoring, you should read this document.

Apple’s Objectives 1

In creating this new architecture on Mac OS X, Apple’s objective in the audio
space has been twofold. The primary goal is to deliver a high-quality, superior
audio experience for Macintosh users. The second objective reflects a shift in
emphasis from developers having to establish their own audio and MIDI
protocols in their applications to Apple moving ahead to assume responsibility
for these services on the Macintosh platform.

Developer Resources 1

Apple provides a number of resources available to assist developers. These
include

■

The core audio mailing list:

http://lists.apple.com/

■

The developer Web site:

http://developer.apple.com/audio

If you are developing software support for audio hardware, you should be
familiar with the Kernel and IOKit services of Mac OS X. Documentation for
these services is available at

http://developer.apple.com/techpubs/macosx/Kernel/kernel.html

C H A P T E R 1

Audio and MIDI on Mac OS X

8

Core Audio Overview

Preliminary © Apple Computer, Inc 5/29/01

For Mac OS X development resources, refer to

http://developer.apple.com/macosx/

Core Audio Overview 1

Introduction 1

The audio system provided under Mac OS X presents a multi-tiered set of API
services that developers can take advantage of in their applications. These
range from low-level access to particular audio devices, to sequencing and
software-synthesis. The MIDI services present the capabilities of a MIDI device,
which allow an application to interface to a device, and manage and manipulate
the MIDI data flow around the system.

These API services in the audio system are presented in frameworks. A
framework is a type of bundle that packages a dynamic shared library with the
resources that the library requires, including header files. A framework bundle
has an extension of

.framework

. Inside the bundle there can be multiple major
versions of the framework.

The executable code in a framework is a dynamic shared library. Multiple,
concurrently running programs can share the code in this library without
requiring their own copy. As a packaging mechanism used by Mac OS X,
frameworks present the runtime library that your application can run against,
and the header files that you can use to link to.

Frameworks are implemented in C and C++ and present a C-based function
API. There is also a Java API presented to developers for these audio system
services. The Java API primarily presents a corresponding C function or
structure as a method on a Java class. There is as minimal as possible overhead
in the interface of Java code to the underlying C implementation. Everything
that the C interface presents to the developer can also be accomplished using
Java.

Thus, if you are an application developer, you can use either or both languages,
depending upon your needs and requirements. Because the Java API so closely
follows the C API, understanding the overall design of these frameworks is
needed as much by the Java developer as the C developer in order to effectively
use the provided services.

C H A P T E R 1

Audio and MIDI on Mac OS X

Core Audio Overview

9

Preliminary © Apple Computer, Inc 5/29/01

Goals 1

Some of the key features of the core audio architecture available on Mac OS X
include

■

A flexible audio format.

■

Multi-channel Audio I/O.

■

Support for both PCM and non-PCM formats.

■

Float32 is the generic format.

■

Fully-specifiable sample rates.

■

Multiple application usage of Audio Devices.

■

Application determined latency.

■

Ubiquity of timing information.

■

Both C and Java APIs.

Figure 1-1 illustrates the core audio architecture on Mac OS X and its various
building blocks.

Figure 1-1

The Core Audio Architecture

The theory of operation behind the core audio architecture is discussed in
subsequent chapters of this book.

Kernel

User

C H A P T E R 1

Audio and MIDI on Mac OS X

10

Core Audio Overview

Preliminary © Apple Computer, Inc 5/29/01

The Audio Hardware Abstraction Layer (HAL) 1

This is presented in the

CoreAudio.framework

 and defines the lowest level of
Audio hardware access to the application. It presents the global properties of
the system, such as the list of available audio devices. It also contains an

AudioDevice

 object that allows the application to read input data and write
output data to an audio device that is represented by this object. It also provides
the means to manipulate and control the device through a property mechanism.

The service allows for devices that use either PCM and/or encoded data. For
PCM devices, the generic format is 32-bit Floating point, maintaining a high
resolution of the audio data regardless of the actual physical format of the
device. This is also the generic format of PCM data streams throughout the Core
Audio API.

Multi-channel data is represented as interleaved streams of individual samples.
An AudioStream object represents n-channels of interleaved samples that
correspond to a particular I/O end-point of the device itself. Some devices (for
example, a card that has both digital and analog I/O) may present more than
one AudioStream.

The service provides the scheduling and user/kernel transitions required to
both deliver and produce audio data to and from the audio device. Timing
information is an essential component of this service; TimeStamps are
ubiquitous throughout both the audio and MIDI system. This provides the
capability to know the state of any particular sample (i.e., “sample accurate
timing”) of the device.

AudioUnits.framework 1

AudioUnits are a single processing unit that either is a source of audio data (for
example, a software synthesizer), a destination of audio data (for example an
AudioUnit that wraps an AudioDevice), or both a source and destination, for
example a DSP unit, such as a reverb, that takes audio data and processes or
transforms this data.

AudioUnits utilize a similar property mechanism as the CoreAudio framework
and use the same structures for both the buffers of audio data and timing
information. AudioUnits also provide real-time control capabilities, called
parameters, that can be scheduled, allowing for changes in the audio rendering
to be scheduled to a particular sample offset within any given “slice” of an
AudioUnits’ rendering process.

C H A P T E R 1

Audio and MIDI on Mac OS X

Core Audio Overview

11

Preliminary © Apple Computer, Inc 5/29/01

An application can use an AudioOutputUnit to interface to a device. The
DefaultOutputAudioUnit will track the selection of a device by the user as the
“default” output for audio, and provides additional services such as Sample
Rate Conversion, to provide a simpler means of interfacing to an output device.

AudioToolbox.framework 1

This framework currently provides two primary services.

1. AUGraph allows for the constructions and management of a signal
processing graph of AudioUnits, managing the connections and run-time
state of the units that comprise a particular graph, including run-time
management of inserting or removing nodes. The ubiquitous timing
information in the signal chain deals with both feedback and fanning.

2. MusicSequence services provide a sequence object comprised of one or more
tracks of MusicEvents (both system provided and user-defined). Track data
can be edited, while a sequence is playing, and its data can be iterated over.
A MusicSequence typically addresses a graph of AudioUnits, where tracks
can be addressed to different nodes (AudioUnits) of its graph. A MusicPlayer
is responsible for the playing of a sequence.

MIDI Services 1

This framework provides the representation of MIDI hardware and the
inter-application communication of MIDI data to an application. The

MIDIDevice

object presents a MIDI capable piece of hardware. A discrete MIDI source or
destination (16 channels of MIDI data) is represented by the

MIDIEndpoint

object. This may be a real device or another application that is presented to your
application as a virtual

MIDIEndpoint

, thus providing the inter-application
communication of MIDI data.

The framework provides the I/O service and hosts the drivers that are supplied
by both Apple and third-party companies to represent that hardware within the
system.

C H A P T E R 1

Audio and MIDI on Mac OS X

12

Core Audio Overview

Preliminary © Apple Computer, Inc 5/29/01

Overview

13

Preliminary © Apple Computer, Inc 5/29/01

C H A P T E R 2

The Audio Hardware
Abstraction Layer (HAL) 2

Figure 2-0
Listing 2-0
Table 2-0

This chapter discusses the Audio Hardware Abstraction Layer (HAL). The
“Reference” (page 19) section describes the constants, data types and functions
that comprise the HAL.

Overview 2

The Audio Hardware Abstraction Layer (HAL) represents the lowest level of
access to audio devices, as well as the general characteristics of the device. It is
presented in the CoreAudio.framework, as are structures and APIs that are used
throughout the core audio system. The CoreAudio.framework is divided into
the following groups of APIs:

■

AudioHardware.h

■

CoreAudioTypes.h

■

HostTime.h

In Java, these services are defined in the

 com.apple.audio.hardware

 package,
with the utility structures and host time services defined in

com.apple.audio.util.

Some of its features include

■

Moving data to and from the device as efficiently as possible across the
User-Kernel boundary.

■

Manipulating device attributes, such as volume, mute, and sample rate.

■

Providing synchronization information.

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

14

Overview

Preliminary © Apple Computer, Inc 5/29/01

Design Goals 2

The goals of the Audio HAL design include the following:

■

A clean, low overhead signal path.

■

Multiple simultaneous clients.

■

Support n channels, higher bit depths and higher sample rates.

■

Support solid synchronization primitives.

■

A small, yet complete API.

The AudioHardware API 2

The Audio Hardware API provides multiple clients with simultaneous access to
all audio devices attached to the host, regardless of how the connection is made,
whether that connection is through PCI, USB, or Firewire. Its goal is to provide
as little overhead and as clean a signal path as possible.

The APIs are presented in object-oriented C code (with Java interfaces). Because
the Audio Hardware API is object-oriented, it is important to understand what
the objects are and how you can manipulate them. Every object has a different
set of properties, which defines the ways that you can get and send bits of data
to and from the Audio Device.

The

AudioHardware.h

 file provides two essential pieces of functionality for
developers on Mac OS X:

■

General characteristics and properties of the audio system as represented by
the

AudioHardware

 calls and functions.

AudioHardware

 has properties the value
of which can be set and retrieved. Applications can register for notifications
of changes to the values of these properties.

■

A particular driver’s services and capabilities as expressed through its
representation as an

IOAudioFamily

 class presented through the

AudioDevice

type.

The Audio Device as a Unit of Encapsulation 2

The basis of this API is the

Audio Device

. It provides a unit of encapsulation for
I/O, timing services and properties that describe and control the device.
Specifically, an Audio Device represents a single I/O cycle, a clock source based
on it, and all the buffers synchronized to it.

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

Overview

15

Preliminary © Apple Computer, Inc 5/29/01

The key feature of an audio device is its ability to input and/or output audio
data in some kind of describable format on a regular –– i.e., time-driven ––
cycle. This is represented to an application through the

IOProc

 of an

AudioDevice

, where an application registers with a device, either a C function or
Java interface, that is called by the audio system on a predictable period. This
period is determined by the size of the audio data to be processed with each call
–– and is a property that the application can set.

An

AudioDevice also has properties whose values can be retrieved and set, and
applications can also register for notifications of changes to the values of these
properties. These properties represent “physical” properties of the device itself,
i.e., they are generally not abstracted or software-emulated capabilities.

In the API, all routines and constants use the prefix, AudioDevice.

An Audio Device is further divided into Audio Streams. An Audio Stream is a
set of n channels of interleaved floating point data in the case of PCM data, or a
discreet and complete data stream of encoded data. It encapsulates the buffer of
memory for transferring the audio data across the User-Kernel boundary. Like
Audio Devices, the Audio Stream provides properties that describe and control
it. Audio Streams always have a single direction, either input or output.

Audio Devices are addressed in the API by specifying whether the request is for
input or output and its channel number. Channel 0 always represents the
“master” channel for a device. The actual channels of the device then use a
1-based indexing scheme and are numbered consecutively up to the total
number of channels for all the Audio Device’s Audio Streams.

Audio Streams are addressed similarly, but omit the direction, as it is implied in
the nature of the stream. The channel numbers for each Audio Stream in an
Audio Device always start at 0 and are numbered consecutively up to the total
number of channels in that particular Audio Stream. However, what is channel
2 for an Audio Stream will not be channel 2 for its Audio Device.

The I/O cycle of an Audio Device presents the data for all its Audio Streams,
input and output, in the same call out to the client. It also provides the
timestamp of when the first sample frame of the input data was acquired as
well as the timestamp of when the first sample frame of the output data will be
consumed by the driver. The size of the buffers used for transfer are specified
per Audio Device by each process.

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

16 Overview

Preliminary © Apple Computer, Inc 5/29/01

Format Information 2

Audio Streams are the “gatekeepers” of format information. Each Audio Stream
on an Audio Device may have its own format, and changes to the format of one
Audio Stream may affect the format of the other Audio Streams on the Audio
Device.

Audio Streams can provide and consume data in any format including
non-PCM encoded formats. The format properties specify the basic format of
the data. It can be further specified by other properties such as the encoded
description property.

Note that if an Audio Stream presents its format as linear PCM, it will always
present its data as 32-bit floating point data. Any necessary conversion to the
actual physical hardware format (such as 16 or 24 bit integer) are handled by
the driver in order to preserve the headroom of the device’s mix bus.

The format-related properties of Audio Devices simply vector the request to the
stream containing the requested channel and direction.

An Audio Device should support an arbitrary number of clients, although it is
not required to. An error is returned if a given device refuses to accept another
client.

Properties 2

Most of the complexity of the API is bound up in the properties and how they
work. Notifications are available for when a property’s value changes.

Global Properties 2

Global properties of the system are prefixed with AudioHardware. Some of the
key global properties are

■ kAudioHardwarePropertyDevices

■ kAudioHardwarePropertyDefaultInputDevice

■ kAudioHardwarePropertyDefaultOutputDevice

■ kAudioHardwarePropertyRunLoop

Getting a List of Devices –– a Code Example 2

The code example in Listing 2-1 is important to understand because it illustrates
a technique for dealing with a property whose value is a variable length list.

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

Overview 17
Preliminary © Apple Computer, Inc 5/29/01

The list of devices which is returned in the example is an array of audio device
IDs.

The code shows how you can use the AudioHardwareGetPropertyInfo call to get
the size of the list, then allocate enough memory to hold the list, and finally get
the device list itself.

The device name is a C string, so it is of variable length.

Listing 2-1 Getting a list of devices

To get the list of devices, you follow these three steps:

1. You get the size of the list.

UInt32theSize;
theStatus = AudioHardwareGetPropertyInfo (

kAudioHardwarePropertyDevices,
&theSize, NULL);

theNumberDevices = theSize / sizeof(AudioDeviceID);

2. You allocate enough space to hold the list.

theDeviceList = (AudioDeviceID*) malloc (
theNumberDevices * sizeof(AudioDeviceID));

3. You get the device list.

UInt32 theSize = theNumberDevices *
sizeof(AudioDeviceID);

theStatus = AudioHardwareGetProperty (
kAudioHardwarePropertyDevices,
&theSize, theDeviceList)

Device Properties 2

Audio Devices and Audio Streams have properties that describe or control
some aspect of their operation, such as the current format or its name. Changes
to a property’s value can be scheduled to occur in real time (if the device

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

18 Overview

Preliminary © Apple Computer, Inc 5/29/01

supports it) or can occur immediately. Clients can sign up to be notified when a
property’s value changes.

Every object has properties that describe and manipulate aspects of the device,
such as its name, buffer size, and volume of a particular channel.

Properties are represented by a unique ID and have conventions about the kind
of data they use for a value. Some properties are read-only.

The following code snippets illustrates how you can set device properties, such
as the volume of a channel.

Setting Channel Volume –– a Code Example 2

To set the volume of a channel, you follow these steps:

1. You find out if output channel 2 has a volume control.

BooleanisWritable;
theStatus = AudioDeviceGetPropertyInfo (

theDeviceID, 2, false,
kAudioDevicePropertyVolumeScalar,
NULL, &isWritable);

2. If it does have a volume control, you set the value.

If ((theStatus == kAudioHardwareNoError)
&& isWritable) {

Float32 theValue;
theStatus = AudioDeviceSetProperty (

theDevice, NULL, 2, false,
kAudioDevicePropertyVolumeScalar,
sizeof(Float32), &theValue);

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

Reference 19
Preliminary © Apple Computer, Inc 5/29/01

Reference 2

This reference section describes the constants, data types and functions that
comprise the HAL available on Mac OS X.

Types 2

typedef UInt32 AudioHardwarePropertyID;
typedef void* AudioDeviceID;
typedef UInt32 AudioDevicePropertyID;
typedef void* AudioStreamID;

#define kAudioDeviceUnknown ((AudioDeviceID)0)
#define kAudioStreamUnknown ((AudioStreamID)0)

Constants 2

The following declarations and definitions are in AudioHardware.h. In Java, the
specific class is notated in brackets before the supplied definitions. In the Java
API, these are available in com.apple.audio.hardware.AHConstants.

kAudioDevicePropertyDeviceName = 'name'

The name of the device as a null-terminated C-string.
kAudioDevicePropertyDeviceManufacturer= 'makr'

The manufacturer of the device as a null-terminated
C-string.

kAudioDevicePropertyDeviceIsAlive = 'livn'

A UInt32 where 1 means the device is installed and ready
to handle requests and 0 means the device has been
removed or otherwise disconnected and is about to go
away completely.
After receiving notification on this property, any
AudioDeviceIDs referring to the destroyed device are
invalid. It is highly recommended that all clients listen for
this notification.

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

20 Reference

Preliminary © Apple Computer, Inc 5/29/01

kAudioDevicePropertyDeviceIsRunning = 'goin'

AUInt32 where 0 means the device is off and 1 means the
device is running.

kAudioDeviceProcessorOverload = 'over'

This property exists so that clients can be informed when
they are overloading the the I/O thread. When the HAL
dectects the situation where the combined processing time
exceeds the duration of the buffer, it will notify all listeners
on this property. Overloading also will cause the HAL to
resynch itself and restart the IO cycle to be sure that the IO
thread goes to sleep. The value of this property is a UInt32,
but its value has no currently defined meaning.

kAudioDevicePropertyBufferSize = 'bsiz'

A UInt32 containing the size of the IO buffers in bytes.
kAudioDevicePropertyStreamConfiguration = 'slay'

This property returns the stream configuration of the
device in an AudioBufferList (with the buffer pointers set
to NULL) which describes the list of streams and the
number of channels in each stream. This corresponds to
what will be passed into the IOProc. It is highly
recommended that all clients listen for this notification.

kAudioDevicePropertyStreamFormat = 'sfmt'

The stream format of the stream containing the requested
channel as an AudioStreamBasicDescription. Since formats
are stream level entities, the number of channels returned
with this property actually refers to the number of channels
in the stream containing the requested channel.
Consequently, it only gives a partial picture of the overall
number of channels for the device. Use
kAudioDevicePropertyStreamConfiguration to get the
information on how the channels are divied up across the
streams.
It is highly recommended that all clients listen for this
notification.

kAudioDevicePropertyStreamFormats = 'sfm#'

An array of the AudioStreamBasicDescription's the device
supports.

kAudioDevicePropertyStreamFormatSupported = 'sfm?'

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

Reference 21
Preliminary © Apple Computer, Inc 5/29/01

An AudioStreamBasicDescription is passed in to query
whether or not the format is supported. A
kAudioDeviceUnsupportedFormatError will be returned if the
format is not supported and kAudioHardwareNoError will be
returned if it is supported. AudioStreamBasicDescription
fields set to 0 will be ignored in the query, but otherwise
values must match exactly.

kAudioDevicePropertyStreamFormatMatch = 'sfmm'

An AudioStreamBasicDescription is passed in which is
modified to describe the closest match to the given format
that is supported by the device.
AudioStreamBasicDescription fields set to 0 should be
ignored in the query and the device is free to substitute any
value it sees fit. Note that the device may return a result
that differs dramatically from the requested format. All
matching is at the device’s ultimate discretion.

kAudioDevicePropertyVolumeScalar = 'volm'

A Float32 between 0 and 1 that scales the volume of the
device/channel across the full range of the device.

kAudioDevicePropertyMute = 'mute'

A UInt32 where 0 means the device is not muted and 1
means the device is muted.

kAudioDevicePropertyPlayThru = 'thru'

A UInt32 where 0 means play through is off and 1 means
play through is on.

kAudioHardwarePropertyDevices = 'dev#'

An array of the AudioDeviceIDs available in the system.
kAudioHardwarePropertyDefaultInputDevice = 'dIn '

The AudioDeviceID of the default input device.
kAudioHardwarePropertyDefaultOutputDevice = 'dOut'

The AudioDeviceID of the default output device.
kAudioHardwarePropertySleepingIsAllowed = 'slep'

A UInt32 where 1 means this process will allow the
machine to sleep and 0 will keep the machine awake. Note
that the machine can still be forced to go to sleep regardless
of the setting of this property.

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

22 AudioDevice

Preliminary © Apple Computer, Inc 5/29/01

AudioDevice 2

This section describes the functions that comprise the AudioDevice in
Mac OS X.

AudioDeviceStart 2

Starts up the given IOProc.

AudioDeviceStart(AudioDeviceID inDevice, AudioDeviceIOProc inProc);

DISCUSSION

Note that the IOProc will likely get called for the first time before the call to this
routine returns.

AudioDeviceStop 2

Stops the given IOProc.

AudioDeviceStop(AudioDeviceID inDevice, AudioDeviceIOProc inProc);

I/O Management 2

These routines allow a client to send and receive data on a given device. They
also provide support for tracking where in a stream of data the hardware is at
currently. Timestamp information is also returned.

In Java, these routines correspond to: com.apple.audio.hardware.AudioDevice
class.

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

AudioDevice 23
Preliminary © Apple Computer, Inc 5/29/01

AudioDeviceAddIOProc 2

Installs the given IO proc for the given device. A client may have multiple IO
procs for a given device.

AudioDeviceAddIOProc(AudioDeviceIDinDevice,
AudioDeviceIOProcinProc,
void*inClientData);

AudioDeviceRemoveIOProc 2

Removes the given IO proc for the given device.

AudioDeviceRemoveIOProc(AudioDeviceID inDevice, AudioDeviceIOProc
inProc);

AudioDeviceIOProc 2

(*AudioDeviceIOProc)(AudioDeviceIDinDevice,
const AudioTimeStamp*inNow,
const AudioBufferList*inInputData,
const AudioTimeStamp*inInputTime,
AudioBufferList*outOutputData,
const AudioTimeStamp*inOutputTime,
void*inClientData);

typedef OSStatus

DISCUSSION

This is a client-supplied routine that the hardware calls to perform an I/O
transaction for a given device. All input and output is presented to the client
simultaneously for processing. The inNow parameter is the sample time that
should be used as the basis of now rather than what might be provided by a
query to the device’s clock. This is necessary because time will continue to

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

24 AudioDevice

Preliminary © Apple Computer, Inc 5/29/01

advance while this routine is executing, making the retrieval of the current time
from the appropriate parameter unreliable for synch operations. The time
stamp for the inputData represents when the data was recorded. For the output,
the timestamp represents when the first sample will be played. In all cases, each
timestamp is accompanied by its mapping into host time.

The format of the actual data depends of the sample format of the device as
specified by its properties. It may be raw or compressed, interleaved or not
interleaved as determined by the requirements of the device and its settings.

If the data for either the input or the output is invalid, the timestamp will have
a value of 0. This occurs when a device does not have any inputs or outputs.

Time Management 2

Time operations are only valid while the device in question is running.
Otherwise, a kAudioHardwareNotRunningError is returned.

AudioDeviceGetCurrentTime 2

Retrieves the current time.

AudioDeviceGetCurrentTime(AudioDeviceID inDevice, AudioTimeStamp*
outTime);

AudioDeviceTranslateTime 2

Translates the given time.

AudioDeviceTranslateTime(AudioDeviceIDinDevice,
const AudioTimeStamp*inTime,
AudioTimeStamp*outTime);

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

AudioDevice 25
Preliminary © Apple Computer, Inc 5/29/01

DISCUSSION

The output time formats are requested using the flags in the outTime argument.
A device may or may not be able to satisfy all requests so be sure to check the
flags again on output.

The key point is that it takes an input timestamp and an output timestamp. The
timestamp structures have a flags field that specifies what part. The timestamp
structure has six or seven different representations of time in it. You need to set
the flags to say which ones are actually valid. In the output, you need to set the
flags for the one in the translation in the output. On input, you specify the
sample time, while on output you want the hosttime.

Device Property Management 2

Devices are comprised of two sections: input and output. Each section is further
divided into a number of channels. A channel, which is the smallest addressable
unit of a device, represents a single channel of input or output for the device. It
may be an entire stream or a channel within a stream.

When getting and setting a device’s properties, it is necessary to always specify
exactly which part of the device to interrogate. The section is specified with a
boolean argument (generally called isInput) where true refers to the input
section and false refers to the output section. The channel is specified with an
unsigned integer argument (generally called inChannel) where 0 means the
master channel and greater than zero refers to the Nth indexed channel starting
with index 1.

When you specify a property, you specify not just the name of the property but
a boolean value, the input or output side of the device, and also a channel
number.

AudioDeviceGetPropertyInfo 2

Retrieves information about the given property on the given channel.

AudioDeviceGetPropertyInfo(AudioDeviceIDinDevice,
UInt32inChannel,
BooleanisInput,

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

26 AudioDevice

Preliminary © Apple Computer, Inc 5/29/01

AudioDevicePropertyIDinPropertyID,
UInt32*outSize,
Boolean*outWritable);

DISCUSSION

The outSize argument will return the size in bytes of the current value of the
property. The outWritable argument will return whether or not the property in
question can be changed.

AudioDeviceGetProperty 2

Retrieves the indicated property data for the given device.

AudioDeviceGetProperty(AudioDeviceIDinDevice,
UInt32inChannel,
BooleanisInput,
AudioDevicePropertyIDinPropertyID,
UInt32*ioPropertyDataSize,
void*outPropertyData);

DISCUSSION

A property is specified as an ID and a channel number. The channel number
allows for access to properties on the channel level. On input, ioDataSize has
the size of the data pointed to by outPropertyData. On output, it will contain the
amount written. If outPropertydata is NULL and ioPropertyDataSize is not, the
amount that would have been written will be reported.

AudioDeviceSetProperty 2

Sets the indicated property data for the given device.

AudioDeviceSetProperty(AudioDeviceIDinDevice,
const AudioTimeStamp*inWhen,
UInt32inChannel,

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

AudioDevice 27
Preliminary © Apple Computer, Inc 5/29/01

BooleanisInput,
AudioDevicePropertyIDinPropertyID,
UInt32inPropertyDataSize,
const void*inPropertyData);

AudioDevicePropertyListenerProc 2

This routine is called when a property's value changes.

(*AudioDevicePropertyListenerProc)(AudioDeviceIDinDevice,
UInt32inChannel,
BooleanisInput,
AudioDevicePropertyIDinPropertyID,
void*inClientData);

typedef OSStatus

AudioDeviceAddPropertyListener 2

Sets up a routine that gets called when the property of a device is changed.

AudioDeviceAddPropertyListener(AudioDeviceIDinDevice,
UInt32inChannel,
BooleanisInput,
AudioDevicePropertyIDinPropertyID,
AudioDevicePropertyListenerProcinProc,
void*inClientData);

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

28 AudioDevice

Preliminary © Apple Computer, Inc 5/29/01

AudioDeviceRemovePropertyListener 2

Removes the given notification.

AudioDeviceRemovePropertyListener(AudioDeviceIDinDevice,
UInt32inChannel,
BooleanisInput,
AudioDevicePropertyIDinPropertyID,
AudioDevicePropertyListenerProcinProc);

AudioHardwareGetPropertyInfo 2

Retrieves information about the given property.

AudioHardwareGetPropertyInfo(AudioHardwarePropertyID inPropertyID,
UInt32*outSize,
Boolean*outWritable);

The outSize argument will return the size in bytes of the current value of the
property. The outWritable argument will return whether or not the property in
question can be changed.

AudioHardwareGetProperty 2

Retrieves the indicated property data.

AudioHardwareGetProperty(AudioHardwarePropertyIDinPropertyID,
UInt32*ioPropertyDataSize,
void*outPropertyData);

DISCUSSION

On input, ioDataSize has the size of the data pointed to by outPropertyData. On
output, it will contain the amount written. If outPropertydata is NULL and

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

AudioDevice 29
Preliminary © Apple Computer, Inc 5/29/01

ioPropertyDataSize is not, the amount that would have been written will be
reported.

AudioHardwareSetProperty 2

Sets the indicated property data. Global properties, by definition, don’t directly
affect real time, so they don’t need a timestamp.

AudioHardwareSetProperty(AudioHardwarePropertyIDinPropertyID,
UInt32inPropertyDataSize,
void*inPropertyData);

AudioHardwarePropertyListenerProc 2

This routine is called when a property’s value changes.

(*AudioHardwarePropertyListenerProc)(AudioHardwarePropertyIDinPropertyID,
void*inClientData);

AudioHardwareAddPropertyListener 2

Sets up a routine that gets called when a property is changed.

AudioHardwareAddPropertyListener(AudioHardwarePropertyIDinPropertyID,
AudioHardwarePropertyListenerProcinProc,
void*inClientData);

C H A P T E R 2

The Audio Hardware Abstraction Layer (HAL)

30 AudioDevice

Preliminary © Apple Computer, Inc 5/29/01

AudioHardwareRemovePropertyListener 2

Removes the given notification.

AudioHardwareRemovePropertyListener(AudioHardwarePropertyIDinPropertyID,
AudioHardwarePropertyListenerProcinProc);

Errors 2

enum
{

kAudioHardwareNoError = 0,
kAudioHardwareNotRunningError = 'stop',
kAudioHardwareUnspecifiedError = 'what',
kAudioHardwareUnknownPropertyError = 'who?',
kAudioDeviceUnsupportedFormatError = '!dat',
kAudioHardwareBadPropertySizeError = '!siz',
kAudioHardwareIllegalOperationError = 'nope'

};

Overview 31

C H A P T E R 3

AudioUnits 3Figure 3-0
Listing 3-0
Table 3-0

This chapter discusses the AudioUnits framework available on Mac OS X. The
section “Reference” (page 37) describes the constants, data types and functions
that comprise the AudioUnits framework.

Overview 3

In the Mac OS X audio system, AudioUnits serve a number of purposes.
AudioUnits are used to generate, process, receive, or otherwise manipulate
streams of audio. They are building blocks that may be used singly or
connected together to form an audio signal graph, or AUGraph.

The Audio Unit Framework 3

The AudioUnit.framework provides a set of services that developers can take
advantage of in their own applications by using AudioUnits. The framework
also provides services for those who want to develop their own AudioUnits.
The framework is divided into the following groups of APIs:

■ AudioUnit.h

■ MusicDevice.h

■ AudioOutputUnit.h

AudioUnits are defined as processing units. Their input can come from a
variety of sources (for example, encoded data, other audio units, or none); their
output is generally a buffer of audio data.

Apple ships a set of AudioUnit components, as well as defining the interface for
the AudioUnit component.

In Java, these services are available in the com.apple.audio.units package.

C H A P T E R 3

AudioUnits

32 Overview

In the Macintosh system architecture, AudioUnits are simply components, and
like all components are identified based on their four-character code type,
subType and ID field. The Component Manager provides a set of APIs for
querying the available components on the system. You can use the
FindNextComponent() call to find out what audio units are installed on the
system. Instances are created by means of the OpenAComponent() call and
released by the CloseComponent() call.

For detailed information about components, refer to

http://gemma.apple.com/techpubs/mac/MoreToolbox/MoreToolbox-333.html

The AudioUnit API 3

The AudioUnit.h API presents the basic AudioUnit interface, as well as the
constants that define the AudioUnitType (‘aunt’), the generic sub-types
(MusicDevice –– ‘musd’, Effects –– ‘efct’, etc), and the specific ID of an
AudioUnit.

The specific ID of an AudioUnit represents the specific functionality of the
audio unit itself. For example, the DLS Music Device is an AudioUnit that is able
to use both Downloadable Sounds (DLS) and SoundFont 2 (SF2) files as sample
data for sample-based synthesis. Its type is ‘aunt’–– an AudioUnit. Its sub-type
is ‘musd’ –– a music device. Its ID is ‘dls ’ –– a DLS music device (note the
space at the end).

Often a sub-type may present additional APIs to the base API presented by an
AudioUnit, though this is not always true. The ID will typically present the
final discriminating identifier for a particular audio unit.

For more specific information about components, refer to Inside Macintosh: More
Macintosh Toolbox, Chapter 6, Component Manager, which is available at

http://developer.apple.com/techpubs/mac/MoreToolbox/MoreToolbox-333.html

Key Points 3

There are two key points here:

■ The type, sub-type and ID correspond to the type, subType and
manufacturerID in the ComponentDescription structure.

■ Apple reserves the right to specify component types, sub-type, and ID fields
as all lowercase characters. For instance, in the example of the DLS Music
Device above, if a third-party developer implemented its own software

C H A P T E R 3

AudioUnits

Overview 33

synthesizer, using custom algorithms, the component would require the
following two values:

Type == ‘aunt’
Sub-Type == ‘musd’

Those values specify to the system that this component implements the Audio
Unit and the extended Music Device interfaces. The component would then use
the ID field to uniquely identify itself and by convention would include at least
one uppercase character:

ID == ‘AdSy’

where the unit was an additive synthesizer, for example.

Audio Unit State 3

The basic AudioUnit states are closed, open, and initialized, which correspond
to these calls:

■ OpenAComponent(...)

■ CloseComponent(...)

■ AudioUnitInitialize(...)

■ AudioUnitUninitialize(...)

No significant resource allocations are expected to occur when the AudioUnit
component is first opened with OpenAComponent(). AudioUnitInitialize() is
called after optional configuration has occured. This is where the AudioUnit
allocates and is prepared to render.

An AudioOutputUnit also may be in a “running” state. You use the
AudioUnitStart() call to start such a unit.

AudioUnitReset() may be called on any initialized AudioUnit(). The
AudioUnitReset() call clears any buffers, resets filter memory, and stops any
playing notes (for example, in a MusicDevice software synthesizer). It places
the AudioUnit back to its initialized state.

C H A P T E R 3

AudioUnits

34 Overview

AudioUnit Sources and Destinations 3

AudioUnits have sources and destinations. An AudioUnit can be just a source
unit, such as software synthesizers, which are presented as a type of AudioUnit
defined as a MusicDevice.

An AudioUnit can also be just a destination that is attached to a hardware
output device.

Some AudioUnits contain both input and output audio data. DSP processors,
such as reverbs, filters, and mixers are examples, as are format converters, such
as 16-bit integer to floating-point converters, interleavers-deinterleavers, and
sample rate converters.

AudioUnit Properties 3

Properties represent a general and extensible mechanism for passing
information to and from AudioUnits. Information is communicated via a void*
data parameter and a data byte-size parameter. The type of information is
identified by an AudioUnitPropertyID.

The AudioUnit property APIs are similar to the MIDI and AudioHAL property
APIs.

Information is addressed to a particular section of an AudioUnit with
AudioUnitScope and AudioUnitElement. AudioUnitScope includes the
following constants:

kAudioUnitScope_Global
kAudioUnitScope_Input
kAudioUnitScope_Output
kAudioUnitScope_Group

AudioUnitElement is a zero-based index of a particular input, output, or group
and is typically ignored for global scope. AudioUnitPropertyIDs are defined in
AudioUnit/AudioUnitProperties.h header file along with their associated data
formats.

C H A P T E R 3

AudioUnits

Overview 35

AudioUnit Parameters 3

Parameters are values that can change over time, and are generally
time-sensitive and can be scheduled. Parameters could include such things as
volume or panning of a particular output on the mixer audio unit, for instance.

I/O Management 3

AudioUnit I/O Management relies on a “pull” I/O model, which specifies
through its properties the number and format of its inputs and outputs. Each
input/output is a whole stream of N-interleaved audio (or side-band) channels.

Data can be supplied to an AudioUnit through one of two mechanisms:

1. Connecting an AudioUnit output to another AudioUnit that will provide
input using kAudioUnitProperty_MakeConnection. Audio data is automatically
routed to the input with no required user intervention.

2. Registering a client callback using kAudioUnitProperty_SetInputCallback
where the client can provide audio source data to an AudioUnit through the
supplied callback.

The AUGraph API provides a higher-level connection service, freeing the client
from calling the AudioUnit directly.

The “Pull” I/O Model 3

As mentioned, AudioUnits use a “pull” I/O model, with each unit specifying
through its properties the number and format of its inputs and ouputs. Each
output is in itself a whole stream of N interleaved audio channels. Connections
between units are also managed via properties. Data is requested from an
AudioUnit through its AudioUnitRenderSlice function being called by one of its
destinations, or the RenderSliceCallback being called.

Key points about AudioUnitRenderSlice() arguments:

■ The AudioTimeStamp specifies the start time of the buffer to be rendered,
synchronizing the hosttime of the machine with the sample time of the audio
to lock it with other realtime events such as MIDI.

■ The AudioBuffer argument passes in and receives back a buffer of audio. The
client may pass in a buffer or let the AudioUnit provide it.

A client can request notifications of the rendering activity of an audio unit by
installing a callback using kAudioUnitProperty_RenderNotification. The

C H A P T E R 3

AudioUnits

36 Overview

client’s callback will then be called by the audio unit, both before and after any
call to the unit’s render slice function.

The inActionFlags parameter provides the unit with instructions on how to
handle the buffer supplied:

kAudioUnitRenderAction_Accumulate

The unit should sum its output into the given buffer, rather than replace it. This
action is only valid for formats that support easy stream mixing like linear
PCM. In addition, a buffer will always be supplied.

kAudioUnitRenderAction_UseProvidedBuffer

This flag indicates that the rendered audio must be placed in the buffer pointed
to by the mData member of the ioData argument. In this case, mData must point to
a valid piece of allocated memory. If this flag is not set, the mData member of
ioData may possibly be changed upon return, pointing to a different buffer
(owned by the AudioUnit).

If the ioData mData member is NULL, then rendering may set mData to a buffer
owned by the AudioUnit.

In any case, on return, mData points to the rendered audio.

The inTimeStamp parameter gives the AudioUnit information about what the
time is for the start of the rendered audio output.

The inOutputBusNumber parameter requests that audio be rendered for a
particular audio output of the AudioUnit. Rendering is performed separately
for each of its outputs. The AudioUnit is expected to cache its rendered audio
for each output in the case that it is called more than once for the same output
(inOutputBusNumber is the same) at the same time (inTimeStamp is the same).
This solves the “fanout” problem.

The MusicDevice API 3

The MusicDevice.h file contains the extended interface for the MusicDevice
component. In Component Manager terms, the MusicDevice implements the
component selectors for the AudioUnit, as well as the additional selectors
specifically for the MusicDevice.

This device presents an API targeted specifically toward software synthesis. The
APIs present two primary means of controlling the MusicDevice:

C H A P T E R 3

AudioUnits

Reference 37

■ A set of APIs based around the MIDI protocol.

■ An extended control protocol to provide an additional degree of specification
and control of music events.

The AudioOutputUnit API 3

The APIs provided in AudioOutputUnit.h are particularly important when using
AUGraph services, which use the start and stop methods of these kinds of units.

The essential and defining characteristic of an output unit is that it drives the
processing work of its connected units. Thus, in the case of the HAL-based
units, the IOProc of the attached Audio Device is responsible for driving the
production of audio data. Each I/O cycle, the HAL Output Unit’s RenderSlice
method is called by the IOProc of the device, which then causes the render slice
function of each of its inputs to be called, and so on.

Once completed, the unit places the resulting data into the output buffer of the
device.

Currently, there are two types of output units shipped by Apple:

■ kAudioUnitID_HALOutput. This type talks to an AudioDevice as specified by
the user of the unit.

■ kAudioUnitID_DefaultOutput. This is a specialized HAL output unit that
provides additional services, such as sample rate conversion, and will also
track the device that the user sets from the Sound Control Panel as the
default device for sound output. As a result, an application can talk directly
to this default output and do no further work to maintain the integrity of the
audio output destination.

One could imagine other types of output units –– for example, an output unit
that writes data to a file, rather than an AudioDevice. In that case, a thread
would be started (and stopped), and each I/O cycle would write the resulting
data to that file.

Reference 3

This reference section describes the constants, data types and functions that
comprise the AudioUnits framework available on Mac OS X.

C H A P T E R 3

AudioUnits

38 Reference

Types 3

Output Device AudioUnits 3

kAudioUnitProperty_GetMicroseconds(Int32* pointing to microseconds value)

struct AudioUnitConnection
{

AudioUnit sourceAudioUnit;
UInt32 sourceOutputNumber;
UInt32 destInputNumber;

};

The following struct defines a callback function which renders audio into an
input of an AudioUnit.

struct AudioUnitInputCallback
{

AudioUnitRenderCallback inputProc;
void * inputProcRefCon;

};

struct AudioUnitParameterInfo
{

char name[64];
AudioUnitParameterUnit unit; // unit type (Hertz,

//Decibels, etc. -- see enum
)

Float32 minValue; // minimum legal value
Float32 maxValue; // maximum legal value
Float32 defaultValue; // initial value when

// AudioUnit is first
// initialized or reset

UInt32 flags; // read-only attributes,
etc.
};

C H A P T E R 3

AudioUnits

Reference 39

Constants 3

enum {
kAudioUnitComponentType = FOUR_CHAR_CODE('aunt'),
kAudioUnitSubType_Output = FOUR_CHAR_CODE('out '),
kAudioUnitID_SoundManagerOutput = FOUR_CHAR_CODE('smgr'),
kAudioUnitID_HALOutput = FOUR_CHAR_CODE('ahal'),
kAudioUnitID_DefaultOutput = FOUR_CHAR_CODE('def '),
kAudioUnitSubType_MusicDevice = FOUR_CHAR_CODE('musd'),
kAudioUnitID_DLSSynth = FOUR_CHAR_CODE('dls '),
kAudioUnitSubType_Encoder = FOUR_CHAR_CODE('aenc'),
kAudioUnitSubType_Decoder = FOUR_CHAR_CODE('adec'),
kAudioUnitSubType_BitDepthConverter = FOUR_CHAR_CODE('bdcv'),
kAudioUnitSubType_SampleRateConverter = FOUR_CHAR_CODE('srcv'),
kAudioUnitID_PolyphaseSRC = FOUR_CHAR_CODE('poly'),
kAudioUnitSubType_FormatConverter = FOUR_CHAR_CODE('fmtc'),
kAudioUnitID_Interleaver = FOUR_CHAR_CODE('inlv'),
kAudioUnitID_Deinterleaver = FOUR_CHAR_CODE('dnlv'),
kAudioUnitSubType_Effect = FOUR_CHAR_CODE('efct'),
kAudioUnitID_MatrixReverb = FOUR_CHAR_CODE('mrev'),
kAudioUnitID_Delay = FOUR_CHAR_CODE('dely'),
kAudioUnitID_LowPassFilter = FOUR_CHAR_CODE('lpas'),
kAudioUnitID_PeakLimiter = FOUR_CHAR_CODE('lmtr'),
kAudioUnitSubType_Mixer = FOUR_CHAR_CODE('mixr'),
kAudioUnitID_StereoMixer = FOUR_CHAR_CODE('smxr')

};

Render Flags 3

enum {
kAudioUnitRenderAction_Accumulate = (1 << 0),
kAudioUnitRenderAction_UseProvidedBuffer = (1 << 1),
kAudioUnitRenderAction_PreRender = (1 << 2),
kAudioUnitRenderAction_PostRender = (1 << 3)

};

typedef UInt32 AudioUnitRenderActionFlags;

C H A P T E R 3

AudioUnits

40 Reference

Properties 3

enum {
kAudioUnitScope_Global = 0,
kAudioUnitScope_Input = 1,
kAudioUnitScope_Output = 2,
kAudioUnitScope_Group = 3

};

typedef UInt32 AudioUnitPropertyID;
typedef UInt32 AudioUnitParameterID;
typedef UInt32 AudioUnitScope;
typedef UInt32 AudioUnitElement;

Property Constants for AudioUnits 3

Note that Apple Computer, Inc. reserves property values from 0 -> 63999.
Developers are free to use property IDs above this range at their own discretion.

enum
{
// Applicable to all AudioUnits in general (0 -> 999)

kAudioUnitProperty_ClassInfo = 0,
kAudioUnitProperty_MakeConnection = 1,
kAudioUnitProperty_SampleRate = 2,// value is Float64
kAudioUnitProperty_ParameterList = 3,
kAudioUnitProperty_ParameterInfo = 4,
kAudioUnitProperty_FastDispatch = 5,
kAudioUnitProperty_AUGraphCPULoad = 6, //value Float32

(0->1) -> AUGraph uses this to tell AU what the current CPU load of a
unit's graph is

kAudioUnitProperty_SetInputCallback = 7, // value is
AudioUnitInputCallback; scope is input, element number is the input
number

// Applicable to MusicDevices (1000 -> 1999)
kMusicDeviceProperty_InstrumentCount = 1000,
kMusicDeviceProperty_InstrumentName = 1001,
kMusicDeviceProperty_GroupOutputBus = 1002,
kMusicDeviceProperty_SoundBankFSSpec = 1003,
kMusicDeviceProperty_InstrumentNumber = 1004,

C H A P T E R 3

AudioUnits

Reference 41

// Applicable to "output" AudioUnits (2000 -> 2999)
kAudioOutputUnitProperty_CurrentDevice = 2000

// value is AudioDeviceID
// will work for HAL and default output components

};

General AudioUnit Properties 3

Unless otherwise stated, assume that the inScope parameter is
kAudioUnitScope_Global and the inElement parameter is ignored.

kAudioUnitProperty_ClassInfo(void* points to AudioUnit-defined internal
state)

kAudioUnitProperty_MakeConnection(AudioUnitConnection*)

Pass in kAudioUnitScope_Input for the AudioUnitScope.

Pass in the input number for AudioUnitElement (redundantly
stored in AudioUnitConnection).

kAudioUnitProperty_SampleRate(Float64*)

kAudioUnitProperty_ParameterInfo(AudioUnitParameterInfo*)

Pass in for the AudioUnitElement.

MusicDevice Properties 3

kMusicDeviceProperty_InstrumentCount(UInt32* pointing to count)

kMusicDeviceProperty_InstrumentName(formatted as char*)

Pass in MusicDeviceInstrumentID for the AudioUnitElement.

kMusicDeviceProperty_GroupOutputBus(UInt32* pointing to bus number)

Pass in MusicDeviceGroupID for the AudioUnitElement.

Pass in kAudioUnitScope_Group for the AudioUnitScope.

kMusicDeviceProperty_IsInInterrupt(UInt32* pointing to UInt32 where zero
indicates "false")

This property is write-only -- we're telling the AudioUnit if it's
in an interrupt

kMusicDeviceProperty_Task(output data is ignored)

C H A P T E R 3

AudioUnits

42 Reference

kMusicDeviceProperty_QTMAInstrumentNumber
 (UInt32* pointing to inst number)

Parameters 3

enum
{

kAudioUnitParameterUnit_Generic = 0, /* generic value generally
between 0.0 and 1.0 */

kAudioUnitParameterUnit_Indexed = 1, /* takes an integer value (good
for menu selections) */

kAudioUnitParameterUnit_Boolean = 2, /* 0.0 means FALSE, non-zero
means TRUE */

kAudioUnitParameterUnit_Percent = 3, /* usually from 0 -> 100,
sometimes -50 -> +50 */

kAudioUnitParameterUnit_Seconds = 4, /* absolute or relative time */
kAudioUnitParameterUnit_SampleFrames = 5, /* one sample frame equals

(1.0/sampleRate) seconds */
kAudioUnitParameterUnit_Phase = 6, /* -180 to 180 degrees */
kAudioUnitParameterUnit_Rate = 7, /* rate multiplier, for playback

speed, etc. (e.g. 2.0 == twice as fast) */
kAudioUnitParameterUnit_Hertz = 8, /* absolute frequency/pitch in

cycles/second */
kAudioUnitParameterUnit_Cents = 9, /* unit of relative pitch */
kAudioUnitParameterUnit_RelativeSemiTones = 10, /* useful for course

detuning */
kAudioUnitParameterUnit_MIDINoteNumber = 11, /* absolute pitch as

defined in the MIDI spec (exact freq may depend on tuning table) */
kAudioUnitParameterUnit_MIDIController = 12, /* a generic MIDI

controller value from 0 -> 127 */
kAudioUnitParameterUnit_Decibels = 13, /* logarithmic relative gain

*/
kAudioUnitParameterUnit_LinearGain = 14, /* linear relative gain */
kAudioUnitParameterUnit_Degrees = 15 /* -180 to 180 degrees, similar

to phase but more general (good for 3D coord system) */
};

typedef UInt32 AudioUnitParameterUnit;

C H A P T E R 3

AudioUnits

Reference 43

Initialization 3

No substantial allocation of resources should occur when the AudioUnit
component is opened. Instead, only access to basic properties is allowed. To
fully initialize the AudioUnit, you call AudioUnitInitialize().

AudioUnitInitialize 3

AudioUnitInitialize (AudioUnit ci);

AudioUnitUninitialize 3

AudioUnitUninitialize (AudioUnit ci);

Property Management 3

Properties describe or control some aspect of an AudioUnit that does not vary
in time. Properties are addressed via their ID, scope, and element. The ID
identifies the property and describes the structure of its data. The scope
identifies the functional area of the AudioUnit of interest. The element identifies
the specific part of the scope of interest.

Examples of properties include user readable names, stream format, data
sources, and one shot configuration information.

AudioUnitGetPropertyInfo 3

AudioUnitGetPropertyInfo (AudioUnit ci,
 AudioUnitPropertyID inID,
 AudioUnitScope inScope,
 AudioUnitElement inElement,
 UInt32 * outDataSize,
 Boolean * outWritable)

C H A P T E R 3

AudioUnits

44 Reference

DISCUSSION

You can pass in NULL for outData, to determine how much memory to allocate
for variable size properties.

AudioUnitGetProperty 3

AudioUnitGetProperty (AudioUnit ci,
 AudioUnitPropertyID inID,
 AudioUnitScope inScope,
 AudioUnitElement inElement,
 void * outData,
 UInt32 * ioDataSize);

AudioUnitSetProperty 3

AudioUnitSetProperty (AudioUnit ci,
 AudioUnitPropertyID inID,
 AudioUnitScope inScope,
 AudioUnitElement inElement,
 void * inData,
 UInt32 inDataSize);

AudioUnitSetRenderNotification 3

AudioUnitSetRenderNotification (AudioUnit ci,
 AudioUnitRenderCallback inProc,
 void * inProcRefCon);

C H A P T E R 3

AudioUnits

Reference 45

AudioUnitAddPropertyListener 3

AudioUnitAddPropertyListener (AudioUnit ci,
 AudioUnitPropertyID inID,
 AudioUnitPropertyListenerProc inProc,
 void * inProcRefCon);

AudioUnitRemovePropertyListener 3

AudioUnitRemovePropertyListener (AudioUnit ci,
 AudioUnitPropertyID inID,
 AudioUnitPropertyListenerProc inProc);

Parameter Management 3

Parameters control a specific aspect of the processing of an AudioUnit that can
vary in time. Parameters are represented as single floating point values and are
addressed by their ID, scope and element similar to properties.

Since parameters vary in time, AudioUnits must support some notion of
scheduling. That said, it is not the intent of this API to force an AudioUnit to
support complete scheduling and history. It is assumed that the general
workload of an AudioUnit’s scheduler will revolve around scheduling events at
most a few buffers into the future. Further, the event density is generally
expected to be light. Therefore, the client of an AudioUnit should take care in
the number of events it schedules as it could drastically affect performance.

Examples of parameters include volume, panning, filter cutoff, delay time LFO
spead, and rate multiplier.

C H A P T E R 3

AudioUnits

46 Reference

AudioUnitGetParameter 3

AudioUnitGetParameter (AudioUnit ci,
 AudioUnitParameterID inID,
 AudioUnitScope inScope,
 AudioUnitElement inElement,
 Float32 * outValue);

AudioUnitSetParameter 3

AudioUnitSetParameter (AudioUnit ci,
 AudioUnitParameterID inID,
 AudioUnitScope inScope,
 AudioUnitElement inElement,
 Float32 inValue,
 UInt32

inBufferOffsetInFrames);

AudioUnitRenderSlice 3

AudioUnitRenderSlice (AudioUnit ci,
 AudioUnitRenderActionFlags inActionFlags,
 const AudioTimeStamp * inTimeStamp,
 UInt32 inOutputBusNumber,
 AudioBuffer * ioData);

If scope is global, then it reinitializes a device to its default state.

AudioUnitReset 3

AudioUnitReset (AudioUnit ci,
 AudioUnitScope inScope,
 AudioUnitElement inElement);

C H A P T E R 3

AudioUnits

Reference 47

Callbacks 3

The following is a callback that an AudioUnit can make from its RenderSlice
function. It can be used as a RenderNotify callback for the owner (usually the
AUGraph) to get called back before and after rendering.

It can also be used as an InputCallback to provide a buffer of audio inputto one
of the AudioUnit’s inputs.

The same arguments that are passed to AudioUnitRenderSlice() are passed on to
the callback here.

typedef CALLBACK_API_C(OSStatus, AudioUnitRenderCallback)
(void *inRefCon, AudioUnitRenderActionFlags
inActionFlags, const AudioTimeStamp *inTimeStamp,
UInt32 inBusNumber, AudioBuffer *ioData);

The following callback is called when a client registers for notifications of
property changes to an AudioUnit with the AudioUnitAddPropertyListener
call.

typedef CALLBACK_API_C(void, AudioUnitPropertyListenerProc)
(void *inRefCon, AudioUnit ci,
AudioUnitPropertyID inID, AudioUnitScope inScope,
AudioUnitElement inElement);

Function Pointers 3

The following are function pointers defined for functions where performance is
an issue.

You can use the kAudioUnitProperty_FastDispatch property to get a function
pointer pointing directly to your implementation. This avoids the high cost of
dispatching through the Component Manager.

typedef CALLBACK_API_C(ComponentResult, AudioUnitGetParameterProc)
(void *inComponentStorage, AudioUnitParameterID
inID, AudioUnitScope inScope, AudioUnitElement
inElement, Float32 *outValue);

C H A P T E R 3

AudioUnits

48 Reference

typedef CALLBACK_API_C(ComponentResult, AudioUnitSetParameterProc)
(void *inComponentStorage, AudioUnitParameterID
inID, AudioUnitScope inScope, AudioUnitElement
inElement, Float32 inValue, UInt32
inBufferOffsetInFrames);

typedef CALLBACK_API_C(ComponentResult , AudioUnitRenderSliceProc)
(void *inComponentStorage,
AudioUnitRenderActionFlags inActionFlags, const
AudioTimeStamp *inTimeStamp, UInt32
inOutputBusNumber, AudioBuffer *ioData);

Errors 3

enum {
kAudioUnitErr_InstrumentTypeNotFound = -10872,
kAudioUnitErr_InvalidFile = -10871,
kAudioUnitErr_UnknownFileType = -10870,
kAudioUnitErr_FileNotSpecified = -10869,
kAudioUnitErr_InvalidProperty = -10879,
kAudioUnitErr_InvalidParameter = -10878,
kAudioUnitErr_InvalidElement = -10877,
kAudioUnitErr_NoConnection= -10876,
kAudioUnitErr_FailedInitialization = -10875,
kAudioUnitErr_TooManyFramesToProcess = -10874,
kAudioUnitErr_IllegalInstrument = -10873,
kAudioUnitErr_FormatNotSupported = -10868,
kAudioUnitErr_Uninitialized= -10867

};

Overview 49

C H A P T E R 4

Audio Toolbox 4Figure 4-0
Listing 4-0
Table 4-0

This chapter discusses the AUGraph and Music Sequence APIs, which are part
of the Audio Toolbox on Mac OS X, and the services provided by the
AudioToolbox.framework that applications can use for audio processing. The
section “Reference” (page 53) describes the constants, data types and functions
that comprise the Audio Toolbox framework

Overview 4

The AudioToolbox.framework provides a set of services that applications can use
for audio processing. The framework is divided into the following groups of
APIs:

■ AUGraph.h

■ MusicPlayer.h

In Java, these services are provided in the com.apple.audio.toolbox package.

The AUGraph 4

The AUGraph is a high-level representation of a set of AudioUnits, along with
the connections between them. You can use these APIs to construct arbitrary
signal paths through which audio may be processed, i.e., a modular routing
system. The APIs deal with large numbers of AudioUnits and their
relationships.

AudioGraphs provide the following services:

■ Realtime routing changes that allow for connections to be created and broken
while audio is being processed.

■ Maintaining representation even when AudioUnits are not instantiated.

C H A P T E R 4

Audio Toolbox

50 Overview

AUGraphs are created and destroyed using the NewAUGraph() and
DisposeAUGraph() calls.

AUGraph APIs 4

AUGraph is an object that provides services to create graphs of audio units, i.e., a
signal processing graph. An AUGraph must have some kind of Audio Output unit
as its head, so that when AUGraphStart is called, the AUGraph calls the start
method of the output unit to start the work of the AUGraph. This output unit is
then responsible for driving the production of audio data by its graph.

For instance, in the case of an audio output unit that talks to an AudioDevice,
this will start (and stop) the IOProc cycle of that device, and the production
audio data is constrained by the time period of the device, i.e., the processing
must be done in real time.

Other output units could be written that would write their data to a file. In that
case, the start and stop methods would be responsible for preparing the file to
be written and establish the cycle of calls that would pull on the AUGraph’s
AudioUnit nodes. In this case, the processing of the graph is not constrained by
time, but perhaps by the amount of disk space available to write the file to.

AUGraph objects can also be serialized, with their state written to a data file, and
then re-established from that data. The format of that data stream is not public
at this time.

AUGraph State 4

The AUGraph maintains its representation using the AUNode structure, even
when the AudioUnit components themselves are not instantiated.

The AUGraph states are defined as closed, open, initialized, and running. These
correspond directly with the AudioUnit states.

The AUGraph APIs are responsible for representing the description of a set of
AudioUnit components, as well as the audio connections between their inputs
and outputs. This representation may be saved and restored persistently and
instantiated by opening all of the AudioUnits (AUGraphOpen()), and making
the physical connections between them stored in the representation
(AUGraphInitialize()). Thus, the AUGraph is a description of the various
AudioUnits and their connections, but also manage the actual instantiated
AudioUnits.

C H A P T E R 4

Audio Toolbox

Overview 51

The AUGraph is a complete description of an audio signal processing network.

The AUGraph may be introspected in order to get complete information about
all of the AudioUnits in the graph. The various nodes (AUNode) in the
AUGraph representing AudioUnits may be added or removed, and the
connections between them modified.

An AUNode representing an AudioUnit component is created by specifying a
ComponentDescription record (from the Component Manager), as well as
optional “class” data, which is passed to the AudioUnit when it is opened.

This class data is in an arbitrary format, and may differ depending on the
particular AudioUnit. In general, the data is used by the AudioUnit to configure
itself when it is opened (in object-oriented terms, it corresponds to constructor
arguments). In addition, certain AudioUnits may provide their own class data
when they are closed, allowing their current state to be saved for the next time
they are instantiated. This provides a general mechanism for persistence.

The MusicPlayer API 4

The MusicPlayer.h APIs provide the services of a sequencing toolbox. This
toolbox is where events can be collected into tracks, and tracks can be copied,
pasted, and looped within a sequence.

The Music Player API is described in detail in Chapter 9, “Audio Toolbox
Reference.”

Each MusicSequence object can be associated with a single AUGraph object, and it
is the nodes within that graph that the sequence will generally interact with,
directing its events to particular nodes. A MusicSequence is played by a
MusicPlayer object.

A MusicSequence can be created from a Standard MIDI File (.smf or .mid). When
using this, the sequence will create tracks that correspond to the different MIDI
channels that have events associated with them in the MIDI file.

The MusicSequence track’s can be iterated over, allowing your application to
scan through the events that are contained with that track.

There are a set of predefined event types in this API –– including a user event
type –– that applications can use for their own custom events.

A MusicSequence contains an arbitrary number of tracks (MusicTrack) each of
which contains time-stamped (typically in units of beats, or seconds) events in

C H A P T E R 4

Audio Toolbox

52 Overview

time-increasing order. There are various types of events, including the expected
MIDI events, tempo, and extended events.

A MusicTrack has properties which may be inspected and assigned, including
support for looping, muting/soloing, and timestamp interpretation. There are
APIs for iterating through the events in a MusicTrack and for performing basic
editing operations on them.

Each MusicSequence may have an associated AUGraph object, which represents
a set of AudioUnits and the connections between them. Thus, each MusicTrack
of the MusicSequence may address its events to a specific AudioUnit within the
AUGraph.

Consequently, you can automate arbitrary parameter changes to AudioUnits,
and schedule notes to be played to MusicDevices (AudioUnit software
synthesizers) within an arbitrary audio processing network (AUGraph).

MusicSequence global information consists of:

■ An AUGraph.

■ Copyright and other textual information.

MusicTrack properties are:

■ AUNode (in the AUGraph) of the AudioUnit addressed by the MusicTrack.

■ Textual information.

■ Mute / solo state.

■ Offset time.

■ Loop time and number of loops.

■ Time units for the event timestamps (beats, seconds, ...).

■ Beats go through tempo map, seconds map absolute time.

C H A P T E R 4

Audio Toolbox

Reference 53

Reference 4

This reference section describes the constants, data types and functions that
comprise the Audio Toolbox framework available on Mac OS X.

Types 4

AUGraph 4

typedef long AUNode;
typedef struct OpaqueAUGraph *AUGraph;

MusicSequence 4

struct MIDINoteMessage
{

UInt8 channel;
UInt8 note;
UInt8 velocity;
UInt8 reserved;
Float32 duration;

};

struct MIDIChannelMessage
{

UInt8 status; // contains message and channel

// message specific data
UInt8 data1;
UInt8 data2;
UInt8 reserved;

};

C H A P T E R 4

Audio Toolbox

54 Reference

struct MIDIRawData
{

UInt32 length;
UInt8 data[1];

};

struct MIDIMetaEvent
{

UInt8 metaEventType;
UInt32 dataLength;
UInt8 data[1];

};

struct ExtendedNoteOnEvent
{

MusicDeviceInstrumentID instrumentID;
MusicDeviceGroupID groupID;
Float32 duration;
MusicDeviceNoteParams extendedParams;

};

// allocated space for 16 arguments
struct ExtendedNoteOnEvent16
{

MusicDeviceInstrumentID instrumentID;
MusicDeviceGroupID groupID;
Float32 duration;
MusicDeviceNoteParams16 extendedParams;

};

struct ExtendedControlEvent
{

MusicDeviceGroupID groupID;
AudioUnitParameterID controlID;
Float32 value;

};

struct ExtendedTempoEvent
{

Float64 bpm;
};

C H A P T E R 4

Audio Toolbox

Reference 55

typedef struct OpaqueMusicPlayer *MusicPlayer;
typedef struct OpaqueMusicSequence *MusicSequence;
typedef struct OpaqueMusicTrack *MusicTrack;
typedef struct OpaqueMusicEventIterator *MusicEventIterator;

Constants:AUGraph 4

enum {
kAUGraphErr_NodeNotFound = -10860

};

MusicSequence 4

enum
{

kSequenceTrackProperty_LoopInfo = 0, // struct {MusicTimeStamp
loopLength; long numberOfLoops;};

kSequenceTrackProperty_OffsetTime = 1, // struct {MusicTimeStamp
offsetTime;};

kSequenceTrackProperty_MuteStatus = 2, // struct {Boolean
muteState;};

kSequenceTrackProperty_SoloStatus = 3 // struct {Boolean
soloState;};
};

Depending on the event type, you cast the returned void* pointer to:

kMusicEventType_ExtendedNoteExtendedNoteOnEvent*

kMusicEventType_ExtendedControl ExtendedControlEvent*
kMusicEventType_ExtendedTempo ExtendedTempoEvent*
kMusicEventType_User <user-defined-data>*
kMusicEventType_Meta MIDIMetaEvent*

C H A P T E R 4

Audio Toolbox

56 Reference

kMusicEventType_MIDINoteMessage MIDINoteMessage*
kMusicEventType_MIDIChannelMessage MIDIChannelMessage*
kMusicEventType_MIDIRawData MIDIRawData*

Defining the Events Supported by the Sequencer 4

The following music event types, including both MIDI and “extended”
protocol, are supported by the sequencer:

enum
{

kMusicEventType_NULL = 0,
kMusicEventType_ExtendedNote, // note with variable number of

arguments (non-MIDI)
kMusicEventType_ExtendedControl, // control change (non-MIDI)
kMusicEventType_ExtendedTempo, // tempo change in BPM
kMusicEventType_User, // user defined data
kMusicEventType_Meta, // standard MIDI file meta event
kMusicEventType_MIDINoteMessage, // MIDI note-on with duration

(for note-off)
kMusicEventType_MIDIChannelMessage, // MIDI channel messages (other

than note-on/off)
kMusicEventType_MIDIRawData, // for system exclusive data
kMusicEventType_Last // always keep at end

};

typedef UInt32 MusicEventType;
typedef Float64 MusicTimeStamp;

#define kMusicTimeStamp_EndOfTrack1000000000.0

You pass this value in to indicate a time passed the last event in the track. In this
way, it is possible to perform edits on tracks which include all events starting at
some particular time up to and including the last event.

enum
{

kAudioToolboxErr_TrackIndexError = -10859,
kAudioToolboxErr_TrackNotFound = -10858,

C H A P T E R 4

Audio Toolbox

Reference 57

kAudioToolboxErr_EndOfTrack = -10857,
kAudioToolboxErr_StartOfTrack = -10856

};

Functions 4

NewAUGraph 4

NewAUGraph(AUGraph *outGraph);

DisposeAUGraph 4

DisposeAUGraph(AUGraphinGraph);

AUGraphNewNode 4

AUGraphNewNode(AUGraphinGraph,
ComponentDescription *inDescription, UInt32
inClassDataLength, const void*inClassData,
AUNode *outNode);

DISCUSSION

If the node has no associated class data, pass in zero for inClassDataLength, and
NULL for inClassData.

C H A P T E R 4

Audio Toolbox

58 Reference

AUGraphRemoveNode 4

AUGraphRemoveNode(AUGraph inGraph,
AUNode inNode);

AUGraphGetNodeCount 4

AUGraphGetNodeCount(AUGraph inGraph,
UInt32 *outNumberOfNodes);

AUGraphGetIndNode 4

AUGraphGetIndNode(AUGraph inGraph,
 UInt32 inIndex,
 AUNode *outNode);

AUGraphGetNodeInfo 4

AUGraphGetNodeInfo(AUGraphinGraph, AUNodeinNode,
ComponentDescription*outDescription,// pass in NULL
if not interested
UInt32*outClassDataLength,// pass in NULL if not
interested
void**outClassData,// pass in NULL if not interested
AudioUnit *outAudioUnit /* 0 if component not loaded
(graph is not wired) */);

C H A P T E R 4

Audio Toolbox

Reference 59

AUGraphConnectNodeInput 4

Connects a node’s output to a node's input.

AUGraphConnectNodeInput(AUGraphinGraph,
AUNodeinSourceNode,
UInt32inSourceOutputNumber,
AUNodeinDestNode,
UInt32inDestInputNumber);

AUGraphDisonnectNodeInput 4

Disconnects a node’s input.

AUGraphDisonnectNodeInput(AUGraphinGraph,
AUNodeinDestNode,
UInt32inDestInputNumber);

AUGraphClearConnections 4

Clears all connections of all nodes.

AUGraphClearConnections(AUGraphinGraph);

AUGraphUpdate 4

AUGraphUpdate(AUGraph inGraph,
 Boolean *outIsUpdated);

DISCUSSION

You call this function after performing a series of “edits” on the AUGraph with
calls such as AUGraphConnectNodeInput() to finalize.

C H A P T E R 4

Audio Toolbox

60 Reference

The call will be synchronous if outIsUpdated is NULL, meaning that it will block
until the changes are incorporated into the graph if outIsUpdated is non-NULL.
Then AUGraphUpdate() will return immediately and outIsUpdated will equal true
if the changes were already made (no more changes to make) or false if the
changes are still outstanding.

The following calls must be made in this order:

1. You instantiate the graph from the representation (opens all AudioUnits) by
calling the AUGraphOpen function.

2. You fully initialize the AudioUnits (you call AudioUnitInitialize() on each)
to prepare for audio processing by calling the AUGraphInitialize function.

3. You instruct the graph to start rendering by calling the AUGraphStart
function.

4. You instruct the graph to stop rendering by calling the AUGraphStop function.

5. You uninitialize the AudioUnits (you call AudioUnitUninitialize() on each)
without closing the components by calling the AUGraphUnInitialize function.

6. You destroy the built graph, leaving only the representation (this closes all
AudioUnits) by calling the AUGraphClose function.

Graphs can be started/stopped, inited/uninited, opened/closed, based on
usage requirements of the user.

The following are query APIs:

AUGraphIsOpen(AUGraph inGraph,
 Boolean *outIsOpen);

AUGraphIsInitialized(AUGraph inGraph,
 Boolean *outIsInitialized);

AUGraphIsRunning(AUGraph inGraph,
 Boolean *outIsRunning);

C H A P T E R 4

Audio Toolbox

Reference 61

Music Player Transport APIs 4

NewMusicPlayer 4

NewMusicPlayer(MusicPlayer*outPlayer);

DisposeMusicPlayer 4

DisposeMusicPlayer(MusicPlayerinPlayer);

MusicPlayerSetSequence 4

MusicPlayerSetSequence(MusicPlayer inPlayer,
MusicSequence inSequence);

MusicPlayerSetTime 4

MusicPlayerSetTime(MusicPlayer inPlayer,
MusicTimeStamp inTime);

MusicPlayerGetTime 4

MusicPlayerGetTime(MusicPlayer inPlayer,
MusicTimeStamp*outTime);

C H A P T E R 4

Audio Toolbox

62 Reference

MusicPlayerPreroll 4

Allows synth devices to load instrument samples.

MusicPlayerPreroll(MusicPlayer inPlayer);

MusicPlayerStart 4

MusicPlayerStart(MusicPlayer inPlayer);

MusicPlayerStop 4

MusicPlayerStop(MusicPlayer inPlayer);

Music Sequence APIs 4

NewMusicSequence 4

NewMusicSequence(MusicSequence*outSequence);

DisposeMusicSequence 4

DisposeMusicSequence(MusicSequenceinSequence);

C H A P T E R 4

Audio Toolbox

Reference 63

MusicSequenceNewTrack 4

Create a new track in the sequence.

MusicSequenceNewTrack(MusicSequence inSequence,
MusicTrack *outTrack);

MusicSequenceDisposeTrack 4

Removes the track from a sequence and disposes the track.

MusicSequenceDisposeTrack(MusicSequence inSequence,
MusicTrack inTrack);

MusicSequenceGetTrackCount 4

MusicSequenceGetTrackCount(MusicSequence inSequence,
UInt32 *outNumberOfTracks);

MusicSequenceGetIndTrack 4

MusicSequenceGetIndTrack(MusicSequence inSequence,
UInt32 inTrackIndex,
MusicTrack *outTrack);

C H A P T E R 4

Audio Toolbox

64 Reference

MusicSequenceGetTrackIndex 4

Returns error code if track is not found in the sequence.

MusicSequenceGetTrackIndex(MusicSequence inSequence,
MusicTrack inTrack,
UInt32*outTrackIndex);

MusicSequenceSetAUGraph 4

MusicSequenceSetAUGraph(MusicSequence inSequence,
AUGraph inGraph);

MusicSequenceGetAUGraph 4

MusicSequenceGetAUGraph(MusicSequence inSequence,
AUGraph *outGraph);

MusicSequenceLoadSMF 4

MusicSequenceLoadSMF(MusicSequence inSequence,
FSSpec *inFileSpec);

DISCUSSION

Standard MIDI files (SMF, and RMF). This function also intelligently parses an
RMID file to extract SMF part inResolution is relationship between "tick" and
quarter note for saving to SMF.

C H A P T E R 4

Audio Toolbox

Reference 65

MusicSequenceSaveSMF 4

MusicSequenceSaveSMF(MusicSequence inSequence,
FSSpec *inFileSpec,
UInt16inResolution);

DISCUSSION

Pass in zero to use default (480 PPQ, normally).

MusicSequenceReverse 4

Reverses (in time) all events (including tempo events).

MusicSequenceReverse(MusicSequence inSequence);

MusicTrack APIs 4

MusicTrackGetSequence 4

MusicTrackGetSequence(MusicTrack inTrack,
MusicSequence*outSequence);

MusicTrackSetDestNode 4

MusicTrackSetDestNode(MusicTrack inTrack,
AUNodeinNode);

C H A P T E R 4

Audio Toolbox

66 Reference

SequenceTrack Property APIs 4

MusicTrackSetProperty 4

MusicTrackSetProperty(MusicTrack inTrack,
UInt32 inPropertyID,
void*inData,
UInt32inLength);

DISCUSSION

The inLength parameter is currently ignored for the properties with fixed size.

MusicTrackGetProperty 4

MusicTrackGetProperty(MusicTrack inTrack,
UInt32 inPropertyID,
void*inData,
UInt32*ioLength);

DISCUSSION

If inData is NULL, then the length of the data will be passed back in outLength.
This allows the client to allocate a buffer of the correct size (useful for variable
length properties -- currently all properties have fixed size).

Notes on properties:

kSequenceTrackProperty_LoopInfo

The default looping behavior is to loop once through the entire track pass zero
in for inNumberOfLoops to loop forever.

C H A P T E R 4

Audio Toolbox

Reference 67

Editing Operations on Sequence Tracks 4

All time ranges are as follows [starttime, endtime). The range includes the start
time, but includes events only up to, but not including the end time.

MusicTrackMoveEvents 4

MusicTrackMoveEvents(MusicTrack inTrack,
MusicTimeStampinStartTime,
MusicTimeStampinEndTime,
MusicTimeStampinMoveTime);

DISCUSSION

inMoveTime may be negative to move events backwards in time.

NewMusicTrackFrom 4

NewMusicTrackFrom(MusicTrackinSourceTrack,
MusicTimeStampinSourceStartTime,
MusicTimeStampinSourceEndTime,
MusicTrack *outNewTrack);

MusicTrackClear 4

Removes all events in the given range.

MusicTrackClear(MusicTrack inTrack,
MusicTimeStampinStartTime,
MusicTimeStampinEndTime);

C H A P T E R 4

Audio Toolbox

68 Reference

MusicTrackCut 4

MusicTrackCut(MusicTrack inTrack,
MusicTimeStampinStartTime,
MusicTimeStampinEndTime);

DISCUSSION

This is the same as MusicTrackClear(), but also moves all following events back
by the range's duration.

MusicTrackCopyInsert 4

MusicTrackCopyInsert(MusicTrack inSourceTrack,
MusicTimeStampinSourceStartTime,
MusicTimeStampinSourceEndTime,
MusicTrack inDestTrack,
MusicTimeStampinDestInsertTime);

DISCUSSION

The given source range is inserted at inDestInsertTime in inDestTrack (all
events at and after inDestInsertTime in inDestTrack are moved forward by the
range’s duration).

MusicTrackMerge 4

MusicTrackMerge(MusicTrack inSourceTrack,
MusicTimeStampinSourceStartTime,
MusicTimeStampinSourceEndTime,
MusicTrack inDestTrack,
MusicTimeStampinDestInsertTime);

C H A P T E R 4

Audio Toolbox

Reference 69

DISCUSSION

The given source range is merged with events starting at inDestInsertTime in
inDestTrack.

Sequence Track Event Access and Manipulation 4

The following routines can be used for sequence track event access and
manipulation.

NewMusicEventIterator 4

NewMusicEventIterator(MusicTrack inTrack,
MusicEventIterator*outIterator);

DISCUSSION

Event iterator objects on tracks.

DisposeMusicEventIterator 4

DisposeMusicEventIterator(MusicEventIteratorinIterator);

MusicEventIteratorSeek 4

MusicEventIteratorSeek(MusicEventIterator inIterator,
MusicTimeStamp inTimeStamp);

DISCUSSION

Passing in kMusicTimeStamp_EndOfTrack for inBeat will position "iterator" to the
end of track (which is pointing to the space just AFTER the last event). You can

C H A P T E R 4

Audio Toolbox

70 Reference

use the MusicEventIteratorPreviousEvent function to backup one, if you want
last event.

MusicEventIteratorNextEvent 4

Seeks track "iterator" to the next event.

MusicEventIteratorNextEvent(MusicEventIterator inIterator);

MusicEventIteratorPreviousEvent 4

Seeks track iterator to the previous event (if the iterator is already at the first
event, then it remains unchanged and an error code is returned).

MusicEventIteratorPreviousEvent(MusicEventIterator inIterator);

MusicEventIteratorGetEventInfo 4

Returns an error code if the track's "iterator" is currently at the end of the track.

MusicEventIteratorGetEventInfo(MusicEventIterator inIterator,
MusicTimeStamp*outTimeStamp,
MusicEventType*outEventType,
void**outEventData,
UInt32*outEventDataSize);

Deleting Events 4

The following APIs can be used to delete the event at the current iterator.

C H A P T E R 4

Audio Toolbox

Reference 71

MusicEventIteratorDeleteEvent 4

MusicEventIteratorDeleteEvent(MusicEventIterator inIterator);

MusicEventIteratorSetEventTime 4

MusicEventIteratorSetEventTime(MusicEventIterator inIterator,
MusicTimeStampinTimeStamp);

MusicEventIteratorHasPreviousEvent 4

MusicEventIteratorHasPreviousEvent(MusicEventIterator inIterator,
Boolean*outHasPreviousEvent);

MusicEventIteratorHasNextEvent 4

MusicEventIteratorHasNextEvent(MusicEventIterator inIterator,
Boolean*outHasNextEvent);

Adding Time-Stamped Events 4

The following APIs are used to add time-stamped events to the track.

MusicTrackNewMIDINoteEvent 4

MusicTrackNewMIDINoteEvent(MusicTrack inTrack,
MusicTimeStampinTimeStamp,
const MIDINoteMessage*inMessage);

C H A P T E R 4

Audio Toolbox

72 Reference

MusicTrackNewMIDIChannelEvent 4

MusicTrackNewMIDIChannelEvent(MusicTrack inTrack,
MusicTimeStampinTimeStamp,
const MIDIChannelMessage *inMessage);

MusicTrackNewMIDIRawDataEvent 4

MusicTrackNewMIDIRawDataEvent(MusicTrack inTrack,
MusicTimeStampinTimeStamp,
const MIDIRawData*inRawData);

MusicTrackNewExtendedNoteEvent 4

MusicTrackNewExtendedNoteEvent(MusicTrack inTrack,
MusicTimeStampinTimeStamp,
const ExtendedNoteOnEvent*inInfo);

MusicTrackNewExtendedControlEvent 4

MusicTrackNewExtendedControlEvent(MusicTrack inTrack,
MusicTimeStampinTimeStamp,
const ExtendedControlEvent*inInfo);

MusicTrackNewExtendedTempoEvent 4

MusicTrackNewExtendedTempoEvent(MusicTrack inTrack,
MusicTimeStampinTimeStamp,
Float64inBPM);

C H A P T E R 4

Audio Toolbox

Reference 73

MusicTrackNewMetaEvent 4

MusicTrackNewMetaEvent(MusicTrack inTrack,
MusicTimeStampinTimeStamp,
void*inMetaEventInfo,
UInt32inMetaEventLength);

MusicTrackNewUserEvent 4

MusicTrackNewUserEvent(MusicTrack inTrack,
MusicTimeStampinTimeStamp,
void*inUserData,
UInt32inUserDataLength);

Event Representation and Manipulation Within a Track 4

You need to be careful in dealing with both SMF-types of MIDI events, and also
be upwardly compatible with an extended MPEG4-SA like paradigm. The
solution is to hide the internal event representation from the client and allow
access to the events through accessor functions. In so doing, the user can
examine and create standard events, or any user-defined event.

C H A P T E R 4

Audio Toolbox

74 Reference

Overview 75

C H A P T E R 5

MIDI System Services 5Figure 5-0
Listing 5-0
Table 5-0

This chapter discusses the MIDI System Services available on Mac OS X. The
section “Reference” (page 80) describes the constants, data types and functions
that comprise the CoreMIDI framework.

Overview 5

In Mac OS X, Apple provides a new set of system services, so that applications
and MIDI hardware can communicate in a single unified way, using a single
API.

MIDI services, which are low level, provide high-performance access to MIDI
hardware devices. There is a driver model in the MIDI world that “talks”
directly to IOKit, so your application has a direct path from the MIDI services
API to the hardware.

Using this driver model, third-party manufacturers can create driver plugins
that talk to IOKit. Those can then be loaded and managed by a server, which
applications talk to through the Core MIDI framework.

The CoreMIDI framework provides the client-side API that applications use to
interface to MIDI devices. The CoreMIDIServer framework is used by those
developers who provide drivers for MIDI devices, and is not covered explicitly
in this document.

In Java, these services are available in the com.apple.audio.midi package.

Goals 5

The primary goal of MIDI services in Mac OS X is to have interoperability
between applications and hardware, so that everyone is working to the same

C H A P T E R 5

MIDI System Services

76 Overview

standard. Other goals include providing MIDI I/O with highly accurate timing,
as required by professional applications. This means from a musical point of
view being able to get a MIDI event into and out of the computer within one
millisecond, i.e., to keep latency under one millisecond, and also to keep jitter
–– i.e., the variations in I/O –– under 200 microseconds.

Another goal is to provide a single system-wide configuration, i.e., knowing
what devices are present, and being able to assign names to those devices,
manufacturer names, and what MIDI channels they’re receiving on and so on.

The MIDI services are designed as an extensible system. Toward that end, a
device can have any number of properties attached to it. And a device
manufacturer can publish their particular properties of their device.

Implementation 5

The client API is implemented as the CoreMIDI framework, which is built as a
Mach-O library. Figure 5-1 shows the MIDI implementation.

The CoreMIDI framework is what applications link to. That framework is
responsible for loading the MIDI Server, if it isn’t already running, and
communicating with Mach messages to get messages across the process
boundaries. A driver will link with CoreMIDIServer, which provides the same
API, except that the driver is running inside the server’s address space. Instead
of having to go through Mach-O messages to talk to the service, it has direct
access to the API.

The server process loads, and manages all communication with MIDI drivers.
Most of its implementation is in the CoreMIDIServer framework, which drivers
may import in order to access the API. Drivers are not I/O Kit drivers, but
rather, are dynamic libraries, using CFPlugin.

Many MIDI drivers can simply be user-side I/O Kit clients (probably for serial,
USB, Firewire). PCI card drivers will need their MIDI drivers to communicate
with a separate Kernel extension.

C H A P T E R 5

MIDI System Services

Overview 77

Figure 5-1 An architectural diagram of the MIDI implementation on Mac OS X

MIDI Drivers 5

Apple provides in Mac OS X a USB MIDI Class standard drivers.

Drivers are installed in /System/Library/Extensions. They are loaded and
managed by the MIDI server, and implemented as user-space CFPlugIns. No
kernel extension (“real” driver) is necessary, unless required by the I/O needs
of the device –– for example, a PCI card.

The MIDI driver functions have a simple programming interface and detect the
presence of hardware. You create a MIDIDevice, MIDIEntity and MIDIEndpoint
object and set their properties. You can perform MIDI I/O, using I/O Kit.

MIDI Hardware 5

Some examples of MIDI hardware include

■ USB MIDI interfaces.

■ USB synthesizers and keyboards. For example, Roland has introduced a
synthesizer that connects directly to the computer by means of USB.

C H A P T E R 5

MIDI System Services

78 Overview

■ PCI cards that have MIDI connectors.

■ FireWire MIDI interfaces.

CoreMIDI Objects 5

MIDI I/O is based on the concept of a source or destination MIDIEndPoint,
where this endpoint is a complete MIDI stream, i.e., 16 channels of MIDI data,
System messages, and so on, as defined by the MIDI specification.

A MIDIDevice represents a piece of MIDI hardware. MIDI I/O devices have
become increasingly complex primarily in order to solve the problem that 16
channels of data is not enough to deal with the multi-timbral requirements of
music composition and studio usage. Thus, many devices present multiple
MIDI sources and destinations that are presented to the computer as
intertwined data streams. MIDIEntitys’ represent a logical grouping of
functionality as defined by the MIDI driver for that device.

For instance, a device with a MIDI-In and MIDI-Out plug and a GM synthesizer
could be presented as a device comprised of two MIDIEntity objects –– one for
the I/O plugs, the other for the built-in synthesizer. The device would be
presented to the application as three MIDIEndpoints, two inputs (MIDI-Out plug
and GM Synthesizer), and one output (MIDI-In plug) for the application.

To read and write MIDI data, an application uses the services of MIDIPort
objects. These objects facilitate the moving of MIDI data within the computer
and in and out. Typically, an application creates a single MIDI in or out port,
and then uses this to set sources or destinations to particular MIDIEndPoints.

MIDIEndPoints can also be virtual. In that case, they represent another
application on the system that is either sending or receiving MIDI data, thus
enabling applications to route MIDI data between each other –– i.e., the Inter
Application Communication of MIDI data.

MIDIPacketList 5

The MIDIPacketList are a time-stamped list of packets to or from one endpoint.
All MIDI I/O functions use this structure. The MIDIPacket contains one or
more simultaneous MIDI events. The exception is a system-exclusive events.

C H A P T E R 5

MIDI System Services

Overview 79

Iterating Through a MIDIPacketList 5

The following code snippet illustrates how to build a MIDIPacketList, and add
and event to the list.

Byte buffer[1024];
MIDIPacketList *pktlist = (MIDIPacketList *)buffer;

MIDIPacket *curPacket = MIDIPacketListInit(pktlist);
Byte noteOn[] = { 0x90, 60, 64 };

curPacket = MIDIPacketListAdd(pktlist, sizeof(buffer), curPacket,
timeStamp, 3, noteOn);

MIDIPacketList helper functions:

// iterate through the packets in a packet list
MIDIPacket *MIDIPacketNext(MIDIPacket *pkt);

// begin building a packet list
MIDIPacket *MIDIPacketListInit(MIDIPacketList *pktlist);

// add an event to a packet list
MIDIPacket *MIDIPacketListAdd(MIDIPacketList *pktlist, ByteCount
listSize, MIDIPacket *curPacket, MIDITimeStamp time, ByteCount nData,
Byte *data);

To find and send to destinations:

ItemCount nDests = MIDIGetNumberOfDestinations();
for (int iDest = 0; iDest < nDests; ++iDest) {

MIDIEndpointRef dest = MIDIGetDestination(iDest);
MIDISend(gOutputPort, dest, &packetList);

}

To find and receive from sources:

ItemCount nSrcs = MIDIGetNumberOfSources();
for (int iSrc = 0; iSrc < nSrcs; ++iSrc) {

MIDIEndpointRef src = MIDIGetSource(iSrc);
void *srcConnRefCon = src;

C H A P T E R 5

MIDI System Services

80 Reference

MIDIPortConnectSource(inPort, src,
srcConnRefCon);

}

void MyReadProc(const MIDIPacketList *pktlist,
void *readProcRefCon, void *srcConnRefCon);

Using MIDIReadProc 5

You use a callback function to receive MIDI input. This is called in a
high-priority thread created by CoreMIDI.framework.

Iterating through devices and entities:

ItemCount ndev = MIDIGetNumberOfDevices();
for (int idev = 0; idev < ndev; ++idev) {

MIDIDeviceRef device = MIDIGetDevice(idev);
ItemCount nent =

MIDIGetNumberOfEntities(device);
for (int ient = 0; ient < nent; ++ient) {

MIDIEntityRef entity =
MIDIGetEntity(device, ient);

...
}
}

Reference 5

This reference section describes the constants, data types and functions that
comprise the CoreMIDI framework available on Mac OS X. The functions are
topically arranged according to usage and correspond to the ordering in the
CoreMIDI.h file.

C H A P T E R 5

MIDI System Services

Reference 81

Types 5

Opaque Types 5

typedef MIDIObjectRef

MIDIObject is the base class for many of the objects in CoreMIDI. They have
properties, and often an “owner” object, from which they inherit any properties
they do not themselves have.

Developers may add their own private properties, whose names must begin
with their company’s inverted domain name, as in Java package names, but
with underscores instead of dots, for example:
com_apple_APrivateAppleProperty

typedef void *MIDIObjectRef;

typedef MIDIClientRef

Derives from MIDIObjectRef; does not have an owner object.

To use CoreMIDI, an application creates a MIDIClientRef, to which it can add
MIDIPortRefs, through which it can send and receive MIDI.

typedef struct OpaqueMIDIClient *MIDIClientRef;

typedef MIDIPortRef

Derives from MIDIObjectRef; owned by a MIDIClientRef.

A MIDIPortRef, which may be an input port or output port, is an object through
which a client may communicate with any number of MIDI sources or
destinations.

typedef struct OpaqueMIDIPort * MIDIPortRef;

typedef MIDIDeviceRef

Derives from MIDIObjectRef; does not have an owner object.

C H A P T E R 5

MIDI System Services

82 Reference

A MIDI device, which either attaches directly to the computer and is controlled
by a MIDI driver, or which is “external,” meaning that it is connected to a
driver-controlled device via a standard MIDI cable.

A MIDIDeviceRef has properties and contains MIDIEntityRefs.

typedef struct OpaqueMIDIDevice *MIDIDeviceRef;

typedef MIDIEntityRef

Derives from MIDIObjectRef, owned by a MIDIDeviceRef.

Devices may have multiple logically distinct sub-components, for example, a
MIDI synthesizer and a pair of MIDI ports, both addressable via a USB port.

By grouping a device’s endpoints into entities, the system has enough
information for an application to make reasonable assumptions about how to
communicate in a bi-directional manner with each entity, as is desirable in MIDI
librarian applications.

These sub-components are MIDIEntityRef's.

typedef struct OpaqueMIDIEntity *MIDIEntityRef;

typedef MIDIEndpointRef

Derives from MIDIObjectRef, owned by a MIDIEntityRef.

Entities have any number of MIDIEndpointRef's, sources and destinations of
16-channel MIDI streams.

typedef struct OpaqueMIDIEndpoint *MIDIEndpointRef;

Forward Structure Declarations 5

typedef struct MIDIPacketList MIDIPacketList;
typedef struct MIDISysexSendRequest MIDISysexSendRequest;
typedef struct MIDINotification MIDINotification;

typedef MIDITimeStamp

C H A P T E R 5

MIDI System Services

Reference 83

A host clock time representing the time of an event, as returned by
AudioGetCurrentHostTime() (or UpTime()).

Since MIDI applications will tend to do a fair amount of math with the times of
events, it’s more convenient to use a UInt64 than an AbsoluteTime.

typedef UInt64MIDITimeStamp;

Callback Functions 5

typedef MIDINotifyProc

This callback function is called when some aspect of the current MIDI setup
changes. Currently, the only defined message is kMIDIMsgSetupChanged,
which simply means, something changed. msgData is null in this case.

message A structure containing information about what changed.

refCon The client’s refCon passed to MIDIClientCreate.

typedef void

(*MIDINotifyProc)(const MIDINotification *message, void *refCon);

typedef MIDIReadProc

This is a callback function through which a client receives incoming MIDI
messages.

A MIDIReadProc function pointer is passed to the MIDIInputPortCreate and
MIDIDestinationCreate functions. The CoreMIDI framework will create a
high-priority receive thread on your client’s behalf, and from that thread, your
MIDIReadProc will be called when incoming MIDI messages arrive. Because
this function is called from a separate thread, be aware of the synchronization
issues when accessing data in this callback.

pktlist The incoming MIDI message(s).

readProcRefCon

The refCon you passed to MIDIInputPortCreate or
MIDIDestinationCreate.

C H A P T E R 5

MIDI System Services

84 Reference

srcConnRefCon

A refCon you passed to MIDIPortConnectSource, which
identifies the source of the data.

typedef void

(*MIDIReadProc)(const MIDIPacketList *pktlist, void *readProcRefCon, void
*srcConnRefCon);

typedef MIDICompletionProc

A callback function to notify the client of the completion of a call to
MIDISendSysex.

request The MIDISysexSendRequest which has completed, or been
aborted.

typedef void

(*MIDICompletionProc)(MIDISysexSendRequest *request);

Structs 5

struct MIDIPacket

One or more MIDI events occuring at a particular time.

Field descriptions
timeStamp The time at which the events occurred, if receiving MIDI,

or, if sending MIDI, the time at which the events are to be
played. Zero means now.

length The number of valid MIDI bytes which follow, in data. (It
may be larger than 256 bytes if the packet is dynamically
allocated.)

data A variable-length stream of MIDI messages. Running status
is not allowed. In the case of system-exclusive messages, a
packet may only contain a single message, or portion of
one, with no other MIDI events.

C H A P T E R 5

MIDI System Services

Reference 85

(This is declared to be 256 bytes in length so clients don't
have to create custom data structures in simple situations.)

struct MIDIPacket
{

MIDITimeStamp timeStamp;
UInt16 length;
Byte data[256];

};
typedef struct MIDIPacket MIDIPacket;

struct MIDIPacketList

A list of MIDI events being received from, or being sent to, one endpoint. Note
that the packets, while defined as an array, may not be accessed as an array,
since they are variable-length. To iterate through the packets in a packet list, use
a loop such as:

<pre>
MIDIPacket *packet = &packetList->packet[0];
for (int i = 0; i < packetList->numPackets; ++i) {
...
packet = MIDIPacketNext(packet);
}
</pre>

Field descriptions
numPackets The number of MIDIPackets in the list.
packet An open-ended array of variable-length MIDIPackets.

struct MIDIPacketList
{

UInt32 numPackets;
MIDIPacket packet[1];

};
typedef struct MIDIPacketList MIDIPacketList;

struct MIDISysexSendRequest

An asynchronous request to send a single system-exclusive MIDI event to a
MIDI destination.

C H A P T E R 5

MIDI System Services

86 Reference

Field descriptions
destination The endpoint to which the event is to be sent.
data Initially, a pointer to the sys-ex event to be sent.

MIDISendSysex will advance this pointer as bytes are sent.
bytesToSend Initially, the number of bytes to be sent. MIDISendSysex

will decrement this counter as bytes are sent.
complete The client may set this to true at any time to abort

transmission. The implementation sets this to true when all
bytes have been sent.

completionProc Called when all bytes have been sent, or after the client has
set complete to true.

completionRefCon Passed as a refCon to completionProc.

struct MIDISysexSendRequest

{
MIDIEndpointRef destination;
Byte * data;
UInt32 bytesToSend;
Boolean complete;
Byte reserved[3];
MIDICompletionProc completionProc;
void * completionRefCon;

};

typedef struct MIDISysexSendRequestMIDISysexSendRequest;

struct MIDINotification

A MIDINotification is a structure passed to a MIDINotifyProc, when CoreMIDI
wishes to inform a client of a change in the state of the system.

Field descriptions
messageID Type of message.
messageSize Size of the entire message, including messageID and

messageSize.

C H A P T E R 5

MIDI System Services

Reference 87

SInt32 messageID;
ByteCount messageSize;
// Additional data may follow, depending on messageID

};

struct MIDINotification
{
typedef struct MIDINotificationMIDINotification;

enum MIDINotificationMessageID's

kMIDIMsgSetupChanged

Some aspect of the current MIDISetup has changed. msgData is
NULL.

enum {
kMIDIMsgSetupChanged = 1 // msgData is NULL

};

Property Name Constants 5

kMIDIPropertyName

Device/entity/endpoint property, string.

CFStringRefkMIDIPropertyName;

kMIDIPropertyManufacturer

Device/entity/endpoint property, string.

CFStringRefkMIDIPropertyManufacturer;

kMIDIPropertyModel

Device/entity/endpoint property, string.

CFStringRefkMIDIPropertyModel;

kMIDIPropertyUniqueID

Devices, entities, endpoints all have unique ID's, integer.

C H A P T E R 5

MIDI System Services

88 Reference

CFStringRefkMIDIPropertyUniqueID;

kMIDIPropertyDeviceID

Entity/endpoint property, integer.

The entity’s system-exclusive ID, in user-visible form.

CFStringRefkMIDIPropertyDeviceID;

kMIDIPropertyReceiveChannels

Endpoint property, integer.

Set by the owning driver; should not be touched by other
clients. The value is a bitmap of channels on which it receives,
(1<<0)=ch 1...(1<<15)=ch 16.

CFStringRefkMIDIPropertyReceiveChannels;

kMIDIPropertyMaxSysExSpeed

Entity/endpoint property, integer. Set by the owning driver;
should not be touched by other clients. Maximum bytes/second
of sysex messages sent to it (default is 3125, as with MIDI 1.0)

CFStringRefkMIDIPropertyMaxSysExSpeed;

kMIDIPropertyAdvanceScheduleTimeMuSec

Device/entity/endpoint property, integer.

Set by the owning driver; should not be touched by other
clients. If it is > 0, then it is a recommendation of how many
microseconds in advance clients should schedule output.
Clients should treat this value as a minimum. For devices with a
> 0 advance schedule time, drivers will receive outgoing
messages to the device at the time they are sent by the client, via
MIDISend, and the driver is responsible for scheduling events to
be played at the right times according to their timestamps.

CFStringRefkMIDIPropertyAdvanceScheduleTimeMuSec;

CFStringRefkMIDIPropertyIsEmbeddedEntity;

C H A P T E R 5

MIDI System Services

Reference 89

CFStringRefkMIDIPropertyConnectionUniqueID;

CFStringRefkMIDIPropertyDriverOwner;

Functions 5

MIDIClient 5

MIDIClientCreate 5

Creates a MIDIClient object.

MIDIClientCreate(CFStringRef name, MIDINotifyProc notifyProc, void *
notifyRefCon, MIDIClientRef * outClient);

name The client’s name.

notifyProc An optional (may be NULL) callback function through which
the client will receive notifications of changes to the system.

notifyRefCon A refCon passed back to notifyRefCon.

outClient On successful return, points to the newly-created
MIDIClientRef.

DISCUSSION

Result: An OSStatus result code.

MIDIClientDispose 5

Disposes a MIDIClient object.

MIDIClientDispose(MIDIClientRef client);

C H A P T E R 5

MIDI System Services

90 Reference

client The client to dispose.

DISCUSSION

Result: An OSStatus result code.

MIDIPort 5

MIDIInputPortCreate 5

Creates an input port through which the client may receive incoming MIDI
messages from any MIDI source.

MIDIInputPortCreate(MIDIClientRef client, CFStringRef portName,
MIDIReadProc readProc, void * refCon, MIDIPortRef *
outPort);

client The client to own the newly-created port.

portName The name of the port.

readProc The MIDIReadProc which will be called with incoming MIDI,
from sources connected to this port.

refCon The refCon passed to readHook.

outPort On successful return, points to the newly-created MIDIPort.

DISCUSSION

After creating a port, use MIDIPortConnectSource to establish an input
connection from any number of sources to your port.

Result: An OSStatus result code.

C H A P T E R 5

MIDI System Services

Reference 91

MIDIOutputPortCreate 5

Creates an output port through which the client may send outgoing MIDI
messages to any MIDI destination.

MIDIOutputPortCreate(MIDIClientRef client, CFStringRef portName,
MIDIPortRef * outPort);

client The client to own the newly-created port

portName The name of the port.

outPort On successful return, points to the newly-created MIDIPort.

DISCUSSION

Output ports provide a mechanism for MIDI merging. The system assumes that
each output port will be responsible for sending only a single MIDI stream to
each destination, although a single port may address all of the destinations in
the system.

Result: An OSStatus result code.

MIDIPortDispose 5

Disposes a MIDIPort object.

MIDIPortDispose(MIDIPortRef port);

port The port to dispose.

DISCUSSION

It is not usually necessary to call this function; when an application's
MIDIClient's are automatically disposed at termination, or explicitly, via
MIDIClientDispose, the client's ports are automatically disposed at this time.

Result: An OSStatus result code.

C H A P T E R 5

MIDI System Services

92 Reference

MIDIPortConnectSource 5

Establishes a connection from a source to a client's input port.

MIDIPortConnectSource(MIDIPortRef port, MIDIEndpointRef source, void *
connRefCon);

port The port to which to create the connection. This port’s readProc
is called with incoming MIDI from the source.

source The source from which to create the connection.

connRefCon This refCon is passed to the MIDIReadProc, as a way to identify
the source.

DISCUSSION

Result: An OSStatus result code.

MIDIPortDisconnectSource 5

Closes a previously-established source-to-input port connection.

MIDIPortDisconnectSource(MIDIPortRef port, MIDIEndpointRef source);

port The port whose connection is being closed.

source The source from which to close a connection to the specified
port.

DISCUSSION

Result: An OSStatus result code.

C H A P T E R 5

MIDI System Services

Reference 93

System Information 5

MIDIGetNumberOfDevices 5

Returns the number of devices in the system.

MIDIGetNumberOfDevices();

DISCUSSION

Result: The number of devices in the system, or 0 if an error occurred.

MIDIGetDevice 5

Returns one of the devices in the system.

MIDIDeviceRef MIDIGetDevice(ItemCount deviceIndex0);

deviceIndex0 The index (0...MIDIGetNumberOfDevices()-1) of the device to
return.

DISCUSSION

Use this to enumerate the devices in the system.

To enumerate the entities in the system, you can walk through the devices, then
walk through the devices’ entities.

Note: If a client iterates through the devices and entities in the system, it will
never visit any virtual sources and destinations created by other clients. Also, a
device iteration will return devices which are "offline" (those that were present
in the past but are not currently present), while iterations through the system’s
sources and destinations will not include the endpoints of offline devices.

Thus, clients should usually prefer MIDIGetNumberOfSources, MIDIGetSource,
MIDIGetNumberOfDestinations and MIDIGetDestination to iterating through
devices and entities to locate endpoints.

C H A P T E R 5

MIDI System Services

94 Reference

Result: A reference to a device, or NULL if an error occurred.

MIDIGetNumberOfSources 5

Returns the number of sources in the system.

MIDIGetNumberOfSources();

DISCUSSION

Result: The number of sources in the system, or 0 if an error occurred.

MIDIGetSource 5

Returns one of the sources in the system.

MIDIGetSource(ItemCount sourceIndex0);

sourceIndex0 The index (0...MIDIGetNumberOfSources()-1) of the source to
return.

DISCUSSION

Result: A reference to a source, or NULL if an error occurred.

MIDIGetNumberOfDestinations 5

Returns the number of destinations in the system.

extern ItemCount MIDIGetNumberOfDestinations();

C H A P T E R 5

MIDI System Services

Reference 95

DISCUSSION

Result: The number of destinations in the system, or 0 if an error occurred.

MIDIGetDestination 5

Returns one of the destinations in the system.

extern MIDIEndpointRef MIDIGetDestination(ItemCount destIndex0);

destIndex0 The index (0...MIDIGetNumberOfDestinations()-1) of the
destination to return.

DISCUSSION

Result: A reference to a destination, or NULL if an error occurred.

Virtual Endpoints 5

MIDIDestinationCreate 5

Creates a virtual destination in a client.

MIDIDestinationCreate(MIDIClientRef client, CFStringRef name,
MIDIReadProc readProc, void * refCon,
MIDIEndpointRef * outDest);

client The client owning the virtual destination.

name The name of the virtual destination.

readProc The MIDIReadProc to be called when a client sends MIDI to the
virtual destination.

refCon The refCon to be passed to the readProc.

outDest On successful return, a pointer to the newly-created destination.

C H A P T E R 5

MIDI System Services

96 Reference

DISCUSSION

Clients may use this to create virtual destinations.

The specified readProc gets called when clients send MIDI to your virtual
destination.

Drivers need not call this; when they create devices and entities, sources and
destinations are created at that time.

Result: An OSStatus result code.

MIDISourceCreate 5

Creates a virtual source in a client.

MIDISourceCreate(MIDIClientRef client, CFStringRef name,
MIDIEndpointRef * outSrc);

client The client owning the virtual source.

name The name of the virtual source.

outSrc On successful return, a pointer to the newly-created source.

DISCUSSION

Clients may use this to create virtual sources.

Drivers need not call this; when they create devices and entities, sources and
destinations are created at that time.

After creating a virtual source, use MIDIReceived to transmit MIDI messages
from your virtual source to any clients connected to the virtual source.

Result: An OSStatus result code.

C H A P T E R 5

MIDI System Services

Reference 97

MIDIEndpointDispose 5

Disposes a virtual source or destination your client created.

MIDIEndpointDispose(MIDIEndpointRef endpt);

endpt The endpoint to be disposed.

DISCUSSION

Result: An OSStatus result code.

I/O 5

MIDISend 5

Send MIDI to a destination.

MIDISend(MIDIPortRef port, MIDIEndpointRef dest, const MIDIPacketList *
pktlist);

port The output port through which the MIDI is to be sent.

dest The destination to receive the events.

pktlist The MIDI events to be sent.

DISCUSSION

Events with future timestamps are scheduled for future delivery. The system
performs any needed MIDI merging.

Result: An OSStatus result code.

C H A P T E R 5

MIDI System Services

98 Reference

MIDISendSysex 5

Send a single system-exclusive event, asynchronously.

MIDISendSysex(MIDISysexSendRequest *request);

request Contains the destination, and the MIDI data to be sent.

DISCUSSION

request->data must point to a single MIDI system-exclusive message, or portion
thereof.

Result: An OSStatus result code.

MIDIReceived 5

Distributes MIDI from a source to the client input ports which are connected to
that source.

MIDIReceived(MIDIEndpointRef src, const MIDIPacketList * pktlist);

src The source which is transmitting MIDI.

pktlist The MIDI events to be transmitted.

DISCUSSION

Drivers should call this function when receiving MIDI from a source.

Clients which have created virtual sources, using MIDISourceCreate, should
call this function when the source is generating MIDI.

Result: An OSStatus result code.

C H A P T E R 5

MIDI System Services

Reference 99

MIDIObject 5

MIDIObjectGetIntegerProperty 5

Gets an object's integer-type property.

MIDIObjectGetIntegerProperty(MIDIObjectRef obj, CFStringRef propertyID,
SInt32 * outValue);

obj The object whose property is to be returned.

propertyID Name of the property to return.

outValue On successful return, the value of the property.

DISCUSSION

See the MIDIObjectRef documentation for information about properties.)

Result: An OSStatus result code.

MIDIObjectSetIntegerProperty 5

Sets an object's integer-type property.

MIDIObjectSetIntegerProperty(MIDIObjectRef obj, CFStringRef
propertyID, SInt32 value);

obj The object whose property is to be altered.

propertyID Name of the property to set.

value New value of the property.

DISCUSSION

See the MIDIObjectRef documentation for information about properties.

C H A P T E R 5

MIDI System Services

100 Reference

Result: An OSStatus result code.

MIDIObjectGetStringProperty 5

Gets an object’s string-type property.

MIDIObjectGetStringProperty(MIDIObjectRef obj, CFStringRef propertyID,
CFStringRef * str);

obj The object whose property is to be returned.

propertyID Name of the property to return.

str On successful return, the value of the property.

DISCUSSION

See the MIDIObjectRef documentation for information about properties.

Result: An OSStatus result code.

MIDIObjectSetStringProperty 5

Sets an object's string-type property.

MIDIObjectSetStringProperty(MIDIObjectRef obj, CFStringRef propertyID,
CFStringRef str);

obj The object whose property is to be altered.

propertyID Name of the property to set.

str New value of the property.

DISCUSSION

See the MIDIObjectRef documentation for information about properties.

Result: An OSStatus result code.

C H A P T E R 5

MIDI System Services

Reference 101

MIDIObjectGetDataProperty 5

Gets an object's data-type property.

MIDIObjectGetDataProperty(MIDIObjectRef obj, CFStringRef propertyID,
CFDataRef * outData);

obj The object whose property is to be returned.

propertyID Name of the property to return.

outData On successful return, the value of the property.

DISCUSSION

See the MIDIObjectRef documentation for information about properties.)

Result: An OSStatus result code.

MIDIObjectSetDataProperty 5

Sets an object's data-type property.

MIDIObjectSetDataProperty(MIDIObjectRef obj, CFStringRef propertyID,
CFDataRef data);

obj The object whose property is to be altered.

propertyID Name of the property to set.

data New value of the property.

DISCUSSION

See the MIDIObjectRef documentation for information about properties.)

Result: An OSStatus result code.

C H A P T E R 5

MIDI System Services

102 Reference

MIDIDevice 5

MIDIDeviceGetNumberOfEntities 5

Returns the number of entities in a given device.

MIDIDeviceGetNumberOfEntities(MIDIDeviceRef device);

device The device being queried.

DISCUSSION

Result: The number of entities the device contains, or 0 if an error occurred.

MIDIEntity 5

MIDIEntityGetNumberOfSources 5

Returns the number of sources in a given entity.

MIDIEntityGetNumberOfSources(MIDIEntityRef entity);

entity The entity being queried.

DISCUSSION

Result: The number of sources the entity contains, or 0 if an error occurred.

C H A P T E R 5

MIDI System Services

Reference 103

MIDIEntityGetSource 5

Returns one of a given entity's sources.

MIDIEndpointRef MIDIEntityGetSource(MIDIEntityRef entity, ItemCount
sourceIndex0);

entity The entity being queried.

sourceIndex0 The index (0...MIDIEntityGetNumberOfSources(entity)-1) of the
source to return.

DISCUSSION

Result: A reference to a source, or NULL if an error occurred.

MIDIEntityGetNumberOfDestinations 5

Returns the number of destinations in a given entity.

MIDIEntityGetNumberOfDestinations(MIDIEntityRef entity);

entity The entity being queried.

DISCUSSION

Result: The number of destinations the entity contains, or 0 if an error occurred.

MIDIEntityGetDestination 5

Returns one of a given entity's destinations.

MIDIEntityGetDestination(MIDIEntityRef entity, ItemCount destIndex0);

entity The entity being queried.

C H A P T E R 5

MIDI System Services

104 Reference

destIndex0 The index (0...MIDIEntityGetNumberOfDestinations(entity) - 1)
of the destination to return.

DISCUSSION

Result: A reference to a destination, or NULL if an error occurred.

MIDIDeviceGetEntity 5

Returns one of a given device's entities.

MIDIEntityRef MIDIDeviceGetEntity(MIDIDeviceRef device, ItemCount
entityIndex0);

device The device being queried.

entityIndex0 The index (0...MIDIDeviceGetNumberOfEntities(device)-1) of
the entity to return.

DISCUSSION

Result: A reference to an entity, or NULL if an error occurred.

MIDIPacketList Utilities 5

MIDIPacketNext 5

Advances a MIDIPacket pointer to the MIDIPacket which immediately follows
it in memory if it is part of a MIDIPacketList.

MIDIPacket * MIDIPacketNext(MIDIPacket *pkt);

pkt A pointer to a MIDIPacket in a MIDIPacketList.

C H A P T E R 5

MIDI System Services

Reference 105

DISCUSSION

This is implemented as a macro for efficiency and to avoid const problems.

Result: The subsequent packet.

MIDIPacketListInit 5

Prepares a MIDIPacketList to be built up dynamically.

MIDIPacket * MIDIPacketListInit(MIDIPacketList *pktlist);

pktlist The packet list to be initialized.

DISCUSSION

Result: A pointer to the first MIDIPacket in the packet list.

MIDIPacketListAdd 5

Adds a MIDI event to a MIDIPacketList.

MIDIPacket * MIDIPacketListAdd(MIDIPacketList * pktlist, ByteCount
listSize, MIDIPacket * curPacket, MIDITimeStamp
time, ByteCount nData, Byte * data);

pktlist The packet list to which the event is to be added.

listSize The size, in bytes, of the packet list.

curPacket A packet pointer returned by a previous call to
MIDIPacketListInit or MIDIPacketListAdd for this packet list.

time The new event’s time.

nData The length of the new event, in bytes.

data The new event. May be a single MIDI event, or a partial sys-ex
event. Running status is not permitted.

C H A P T E R 5

MIDI System Services

106 Reference

DISCUSSION

Result: Returns null if there wasn’t room in the packet for the event; otherwise,
returns a packet pointer which should be passed as curPacket in a subsequent
call to this function.

Error Codes 5

enum {
kMIDIInvalidClient = -10830,
kMIDIInvalidPort = -10831,
kMIDIWrongEndpointType = -10832, // want source, got

// destination, or vice versa
kMIDINoConnection = -10833, // attempt to close a

// non-existent connection
kMIDIUnknownEndpoint = -10834,
kMIDIUnknownProperty = -10835,
kMIDIWrongPropertyType = -10836,
kMIDINoCurrentSetup = -10837, // there is no current setup,

// or it contains no devices
kMIDIMessageSendErr = -10838, // communication with server

// failed
kMIDIServerStartErr = -10839, // couldn't start the server
kMIDISetupFormatErr = -10840, // unparseable saved state
kMIDIWrongThread = -10841 // driver is calling non I/O

// function in server than
// from a thread other
// server's main one

};

107

C H A P T E R 6

Core Audio Utilities 6Figure 6-0
Listing 6-0
Table 6-0

This reference chapter describes the shared Core Audio utilities available on
Mac OS X.

The CoreAudioTypes API 6

The CoreAudioTypes.h file contains general structures and typedefs that are
found and used throughout the audio and MIDI systems, including structures
that represent an audio buffer, a structure describing the particular format of an
audio stream, and structures for timing information.

The Host Time API 6

The APIs available in HostTime.h provide utility functions for converting
between “host-time” and real-time, as expressed in nanoseconds.

Host time is the highest resolution clock that you can use on the system. On
Mac OS X, this is the PowerPC decrementer register, which is the same counter
that drives the Kernel Scheduler. Host time refers to values of numbers that
correspond to that timebase. The HostTime.h file is comprised of routines to
access information that include getting the current time and converting the
hosttime to a useful time in nanoseconds.

Types 6

The following two structures are used to wrap up buffers of audio data when
passing them around in API calls.

struct AudioBuffer
{

UInt32 mNumberChannels; //number of interleaved channels in the

C H A P T E R 6

Core Audio Utilities

108

// buffer
UInt32 mDataByteSize; // the size of the buffer pointed to by

// mData
void* mData; // the pointer to the buffer

};

typedef struct AudioBufferAudioBuffer;

struct AudioBufferList
{

UInt32
mNumberBuffers;
AudioBuffer mBuffers[1];

};
typedef struct AudioBufferList AudioBufferList;

This structure encapsulates all the information for describing the basic
properties of a stream of audio data. The structure is sufficient to describe any
constant bit rate format that has channels which are the same size. Extensions
are required for variable bit rate data and for constant bit rate data where the
channels have unequal sizes. However, where applicable, the appropriate fields
will be filled out correctly for these kinds of formats (the extra data is provided
via separate properties). In all fields, a value of 0 indicates that the field is either
unknown, not applicable or otherwise is inapproprate for the format and
should be ignored.

The extended description data, if applicable, is available via a property with the
same ID as the format ID. The contents of the data are specific to the format.

struct AudioStreamBasicDescription
{

Float64 mSampleRate; // the native sample rate of the audio
// stream

UInt32 mFormatID; // the specific encoding type of audio
// stream

UInt32 mFormatFlags; // flags specific to each format
UInt32 mBytesPerPacket; // the number of bytes in a packet
UInt32 mFramesPerPacket; // the number of frames in each packet
UInt32 mBytesPerFrame; // the number of bytes in a frame
UInt32 mChannelsPerFrame; // the number of channels in each frame

C H A P T E R 6

Core Audio Utilities

109

UInt32 mBitsPerChannel; // the number of bits in each channel
};
typedef struct AudioStreamBasicDescription AudioStreamBasicDescription;

The following struct is for encapsulating the parts of a time stamp. The flags
define which fields are valid.

struct AudioTimeStamp
{

Float64 mSampleTime; // the absolute sample time
UInt64 mHostTime; // the host's root timebase's time
Float64 mRateScalar; // the system rate scalar
UInt64 mWordClockTime; // the word clock time
SMPTETime mSMPTETime; // the SMPTE time
UInt32 mFlags; // the flags indicate which fields

are valid
};
typedef struct AudioTimeStamp AudioTimeStamp;

The following is a struct for encapsulating a SMPTE time. The running rate
should be expressed in the AudioTimeStamp’s mRateScalar field.

struct SMPTETime
{

UInt64 mCounter; // total number of messages received
UInt32 mType; // the SMPTE type (see constants)
UInt32 mFlags; // flags indicating state (see constants
SInt16 mHours; // number of hours in the full message
SInt16 mMinutes; // number of minutes in the full message
SInt16 mSeconds; // number of seconds in the full message
SInt16 mFrames; // number of frames in the full message

};
typedef struct SMPTETime SMPTETime;

Constants 6

The following constants describe SMPTE types (taken from the MTC spec).

C H A P T E R 6

Core Audio Utilities

110

enum
{

kSMPTETimeType24 = 0,
kSMPTETimeType25 = 1,
kSMPTETimeType30Drop = 2,
kSMPTETimeType30 = 3,
kSMPTETimeType2997 = 4,
kSMPTETimeType2997Drop = 5

};

The following flags describe a SMPTE time stamp.

enum
{

kSMPTETimeValid = (1L << 0), // the full time is valid
kSMPTETimeRunning = (1L << 1) // time is running

};

The following flags are for the AudioTimeStamp stucture.

enum
{

kAudioTimeStampSampleTimeValid = (1L << 0),
kAudioTimeStampHostTimeValid = (1L << 1),
kAudioTimeStampRateScalarValid = (1L << 2),
kAudioTimeStampWordClockTimeValid = (1L << 3),
kAudioTimeStampSMPTETimeValid = (1L << 4)

};

The following flag is used for the AudioFormatLinearPCM stucture.

enum
{

kAudioFormatLinearPCM = 'lpcm'
};

The following flags are used in the mFormatFlags field of
AudioStreamBasicDescription to describe linear PCM data.

enum{

C H A P T E R 6

Core Audio Utilities

111

kLinearPCMFormatFlagIsFloat = (1L << 0)

Set this for floating point and clear for integer.
kLinearPCMFormatFlagIsBigEndian = (1L << 1)

Set for big endian and clear for little endian.
kLinearPCMFormatFlagIsSignedInteger = (1L << 2)

Set for signed integer, clear for unsigned integer; only valid
if kLinearPCMFormatFlagIsFloat is clear.

kLinearPCMFormatFlagIsPacked = (1L << 3)

Set this if the sample bits are packed as closely together as
possible; clear if they are high or low aligned within the
channel.

kLinearPCMFormatFlagIsAlignedHigh = (1L << 4)

Set if the sample bits are placed into the high bits of the
channel, clear for low bit placement; only valid if
kLinearPCMFormatFlagIsPacked is clear.

};

The following constants are for use in AudioStreamBasicDescriptions.

enum {
kAudioStreamAnyRate = 0

};

The format can use any sample rate (usually because it does its own rate
conversion). Note that this constant can only appear in listings of supported
descriptions. It should never appear in the current description as a device must
always have a “current” nominal sample rate.

Host Time 6

The following are routines for accessing the host’s time base.

C H A P T E R 6

Core Audio Utilities

112

AudioGetCurrentHostTime 6

Retrieves the current host time value.

AudioGetCurrentHostTime();

AudioGetHostClockFrequency 6

Retrieves the number of ticks per second of the host clock.

AudioGetHostClockFrequency();

AudioGetHostClockMinimumTimeDelta 6

Retrieves the smallest number of ticks difference between two succeeding
values of the host clock. For instance, if this value is 5 and the first value of the
host clock is X, then the next time after X will be at greater than or equal to X+5.

AudioGetHostClockMinimumTimeDelta();

AudioConvertHostTimeToNanos 6

Converts the given host time to a time in nanoseconds.

AudioConvertHostTimeToNanos(UInt64 inHostTime);

AudioConvertNanosToHostTime 6

Converts the given nanoseconds time to a time in the host clock’s time base.

AudioConvertNanosToHostTime(UInt64 inNanos);

I N D E X

113

A

AudioConvertHostTimeToNanos function 112
AudioConvertNanosToHostTime function 112
AudioDeviceAddIOProc function 23
AudioDeviceAddPropertyListener function 27
AudioDeviceGetCurrentTime function 24
AudioDeviceGetProperty function 26
AudioDeviceGetPropertyInfo function 25
AudioDeviceIOProc function 23
AudioDevicePropertyListenerProc

function 27
AudioDeviceRemoveIOProc function 23
AudioDeviceRemovePropertyListener

function 28
AudioDeviceSetProperty function 26
AudioDeviceStart function 22
AudioDeviceStop function 22
AudioDeviceTranslateTime function 24
AudioGetCurrentHostTime function 112
AudioGetHostClockFrequency function 112
AudioGetHostClockMinimumTimeDelta

function 112
AudioHardwareAddPropertyListener

function 29
AudioHardwareGetProperty function 28
AudioHardwareGetPropertyInfo function 28
AudioHardwarePropertyListenerProc

function 29
AudioHardwareRemovePropertyListener

function 30
AudioHardwareSetProperty function 29
AudioUnitAddPropertyListener function 45
AudioUnitGetParameter function 46
AudioUnitGetProperty function 44
AudioUnitGetPropertyInfo function 43
AudioUnitInitialize function 43
AudioUnitRemovePropertyListener

function 45
AudioUnitRenderSlice function 46
AudioUnitReset function 46
AudioUnitSetParameter function 46
AudioUnitSetProperty function 44
AudioUnitSetRenderNotification function 44
AudioUnitUninitialize function 43

AUGraphClearConnections function 59
AUGraphConnectNodeInput function 59
AUGraphDisonnectNodeInput function 59
AUGraphGetIndNode function 58
AUGraphGetNodeCount function 58
AUGraphGetNodeInfo function 58
AUGraphNewNode function 57
AUGraphRemoveNode function 58
AUGraphUpdate function 59

D

DisposeAUGraph function 57
 DisposeMusicEventIterator function 69
DisposeMusicPlayer function 61
DisposeMusicSequence function 62

M

MIDIClientCreate function 89
MIDIClientDispose function 89
MIDIDestinationCreate function 95
MIDIDeviceGetEntity function 104
MIDIDeviceGetNumberOfEntities function 102
MIDIEndpointDispose function 97
MIDIEntityGetDestination function 103
MIDIEntityGetNumberOfDestinations

function 103
MIDIEntityGetNumberOfSources function 102
MIDIEntityGetSource function 103
MIDIGetDestination function 95
MIDIGetDevice function 93
MIDIGetNumberOfDestinations function 94
MIDIGetNumberOfDevices function 93
MIDIGetNumberOfSources function 94
MIDIGetSource function 94
MIDIInputPortCreate function 90
MIDIObjectGetDataProperty function 101
MIDIObjectGetIntegerProperty function 99
MIDIObjectGetStringProperty function 100
MIDIObjectSetDataProperty function 101

I N D E X

114

MIDIObjectSetIntegerProperty function 99
MIDIObjectSetStringProperty function 100
MIDIOutputPortCreate function 91
MIDIPacketListAdd function 105
MIDIPacketListInit function 98, 105
MIDIPacketNext function 104
MIDIPortConnectSource function 92, 98
MIDIPortDisconnectSource function 92
MIDIPortDispose function 91
MIDIReceived function 98
MIDISend function 97
MIDISendSysex function 98
MIDISourceCreate function 96
MusicEventIteratorDeleteEvent function 71
MusicEventIteratorGetEventInfo function 70
MusicEventIteratorHasNextEvent function 71
MusicEventIteratorHasPreviousEvent

function 71
MusicEventIteratorNextEvent function 70
MusicEventIteratorPreviousEvent

function 70
MusicEventIteratorSeek function 69
MusicEventIteratorSetEventTime function 71
MusicPlayerGetTime function 61
MusicPlayerPreroll function 62
MusicPlayerSetSequence function 61
MusicPlayerSetTime function 61
MusicPlayerStart function 62
MusicPlayerStop function 62
MusicSequenceDisposeTrack function 63
MusicSequenceGetAUGraph function 64
 MusicSequenceGetIndTrack function 63
MusicSequenceGetTrackCount function 63
MusicSequenceGetTrackIndex function 64
MusicSequenceLoadSMF function 64
MusicSequenceNewTrack function 63
MusicSequenceReverse function 65
MusicSequenceSaveSMF function 65
MusicSequenceSetAUGraph function 64
 MusicTrackClear function 67
MusicTrackCopyInsert function 68
 MusicTrackCut function 68
MusicTrackGetProperty function 66
MusicTrackGetSequence function 65
MusicTrackMerge function 68

MusicTrackMoveEvents function 67
MusicTrackNewExtendedControlEvent

function 72
MusicTrackNewExtendedNoteEvent function 72
MusicTrackNewExtendedTempoEvent

function 72
MusicTrackNewMetaEvent function 73
 MusicTrackNewMIDIChannelEvent function 72
MusicTrackNewMIDINoteEvent function 71
MusicTrackNewMIDIRawDataEvent function 72
 MusicTrackNewUserEvent function 73
MusicTrackSetDestNode function 65
MusicTrackSetProperty function 66

N

NewAUGraph function 57
NewMusicEventIterator function 69
NewMusicPlayer function 61
NewMusicSequence function 62
NewMusicTrackFrom function 67

115

A P P E N D I X A

Document Revision History A

The following is a change log of this document, which introduced the new core
audio and MIDI software architecture to developers at Apple’s World Wide
Developer Conference in May, 2001.

Table A-1 Audio and MIDI on Mac OS X revision history

Version Notes

05/18/01 Alpha draft of document completed, based on input from the core audio
engineering team at Apple. PDF generated for engineering review.

05/22/01 Revised document to include engineering changes and updates.

05/29/01 Reorganized chapters to include both overview and reference material.
Regrouped types, constants in reference sections. Added types for CoreMIDI
chapter from .h file.

Figure A-0
Listing A-0
Table A-0

A P P E N D I X A

Document Revision History

116

	Audio and MIDI on Mac OS X
	Audio and MIDI on Mac OS X
	Apple’s Objectives
	Developer Resources
	Core Audio Overview
	Introduction
	Goals
	The Audio Hardware Abstraction Layer (HAL)
	AudioUnits.framework
	AudioToolbox.framework
	MIDI Services

	The Audio Hardware Abstraction Layer (HAL)
	Overview
	Design Goals
	The AudioHardware API
	The Audio Device as a Unit of Encapsulation
	Format Information

	Properties
	Global Properties
	Getting a List of Devices –– a Code Example

	Device Properties
	Setting Channel Volume –– a Code Example

	Reference
	Types
	Constants

	AudioDevice
	I/O Management
	Time Management
	Device Property Management
	Errors

	AudioUnits
	Overview
	The Audio Unit Framework
	The AudioUnit API
	Key Points

	Audio Unit State
	AudioUnit Sources and Destinations
	AudioUnit Properties
	AudioUnit Parameters
	I/O Management
	The “Pull” I/O Model

	The MusicDevice API
	The AudioOutputUnit API

	Reference
	Types
	Output Device AudioUnits
	Constants
	Render Flags
	Properties
	Property Constants for AudioUnits
	General AudioUnit Properties
	MusicDevice Properties
	Parameters
	Initialization
	Property Management
	Parameter Management
	Callbacks
	Function Pointers
	Errors

	Audio Toolbox
	Overview
	The AUGraph
	AUGraph APIs
	AUGraph State

	The MusicPlayer API

	Reference
	Types
	AUGraph
	MusicSequence
	Constants:AUGraph
	MusicSequence
	Defining the Events Supported by the Sequencer
	Functions
	Music Player Transport APIs
	Music Sequence APIs
	MusicTrack APIs
	SequenceTrack Property APIs
	Editing Operations on Sequence Tracks
	Sequence Track Event Access and Manipulation
	Deleting Events
	Adding Time-Stamped Events
	Event Representation and Manipulation Within a Track

	MIDI System Services
	Overview
	Goals
	Implementation
	MIDI Drivers
	MIDI Hardware
	CoreMIDI Objects
	MIDIPacketList
	Iterating Through a MIDIPacketList
	Using MIDIReadProc

	Reference
	Types
	Opaque Types
	Forward Structure Declarations
	Callback Functions
	Structs
	Property Name Constants
	Functions
	MIDIClient
	MIDIPort
	System Information
	Virtual Endpoints
	I/O
	MIDIObject
	MIDIDevice
	MIDIEntity
	MIDIPacketList Utilities
	Error Codes

	Core Audio Utilities
	The CoreAudioTypes API
	The Host Time API
	Types
	Constants
	Host Time

	Document Revision History

