“Peace Train”
\/iS|G -G r thes

il



Project Summary

® Use a webcam to identify trains and report
their positions in a meaningful way

® | started with a webcam, plenty of code
from Professor Blahnik, and access to the
CCR room in the PAC



Requirements

® Detect up to 5 trains with cars
® Results displayed analytically or graphically

® Results accurate and delivered in reasonable
time ~0.25 sec

® System supports any track configuration
® Noise is filtered

® Broken Trains are detected

® System supports web reporting



Solutions

Use a logical data structure of “track points” to represent
the track

Any number of trains is permissible so as long as the
physical track can support it

Use motion detection to detect the trains

Train locations are reported visually and analytically (in
terms of track points)

Running time varies based on lighting
® Good lighting is ~.15 sec, bad lighting is ~.40 sec

Noise is filtered as an inherent side effect of the data
structure

Because the track structure is user defined and it is
logical, any physical track layout is useable



Exceptions

® Due to the "when you want it” nature of
finding trains, identifying broken trains isn’t
feasible

® Currently track switches are not supported



Limitatons

® The camera
® Small aperture
® Cannot see the entire track

® \ariant frame rates

When a room gets darker the camera automatically
decreases shutter speed (to allow more light in)

Additionally color variety can affect frame rates
This results in lower performance

® The Computer

® The PC equipment available to me (and most PC
equipment in general) isn’t really powerful enough to
process any resolutions above 160x120 quickly



Methodology

Image Capture
® How do we get images?

Track Point Generation

® How do we generate the points in between user defined track
points?

The Data Structure

® How is the track represented virtually?
Motion Detection

® How do we see if something is moving?
Train Detection

® How do we see if this motion is a train?

Streamlining Algorithms
® Reduce running time (and quantity) of code



Image Capture

® Done with a frame call back system

® A new frame is grabbed when previous
one was processed



Track Point Generation

® \We are given 2 points,(x1,y1) and (x2,y2)

® \We need to determine how many track points (if any)
fit in between the given points

® \We are also given 2 important values

® Box “Radius” = determines the size of a track point in
pixels

® Box Buffer = distance between points in pixels

® To start we need the distance between the two
points
® Use some basic trigonometry



Track Point Generation




Track Point Generation

® Now we find how many points we will need
to add by taking our C (distance between
the points) value and using the following
equation
® NewPts = C/ (BoxRadius*2 + BoxBuffer*2)



Track Point Generation

® Now we can generate the points

® Split the a and b legs of our “triangle” into
NewPts subsections

® Draw horizontal/vertical lines through them

® They will intersect on the hypotenuse, this
intersection is the centerpoint of a new
track point



Track Point Generation




Track Point Generation




Track Point Generation

® All points are saved to the data structure



The Virtual Track

® Structure is essentially a linked list
represented as an array



The Virtual Track — A Node




The Virtual Track — Linked Nodes

(X ¥)
LinkFront LinkFront

LinkBack LinkBack
SwitchFront SwitchFront

Switch Back Switch Back




The Virtual Track — A Switch

(% ¥)

Switch Back

(X ¥)

LinkBack LinkBack
SwitchFront SwitchFront
Switch Back Switch Back




Motion Detection

® Save two images (in greyscale) as close to
each other in time as possible

® Determine the absolute value of the
difference between their greyscale values

® Compare this difference to a threshold
® |f it exceeds the threshold then it is motion

® Threshold should be set to a level that
balances noise and functionality



Area Motion Detection

® Apply the motion detection algorithm to a
small area of an image

® The area used is the size of a track point



Finding Trains

® Start at array entry O (the first entered track
point) and parse the links calling the area motion
detection on that specific track point

® |[f motion is detected then call another function to
find where the motion ends

® The parse function then starts after this end and
continues to search for motion

® Trains must be of a minimum length (user-
defined)

® Cars are considered to be part of a train



Train Reports

® The virtual track is written out to a file

® Analytical Output
® Beginning and Ending Track points of a train

® Graphical Output

® Image of the virtual track motion detected at
the point of searching for trains

® Animation of the trains moving in the virtual
track



Streamlining Algorithms

® Because of the need for immediate results the
algorithms must run as fast as possible, thus
making streamlining of central importance to this
project

® Minimize I/O
® PSet (pixel set) versus JFB's Showlmage

PSet writes one pixel to a picture at a time
® Thus in a 160x120 image you are making 19200 1/O calls

Showlmage “blasts” all of the image data in an array to the
picture at once

® Remove Recursion
® | oops execute faster



Demonstration



Strategies

® Modularize Code

® |ts reusable, makes debugging much easier,
and makes combining stubs easier

® Stub Programs

® Test concepts in stub programs

® Stubs give you a controlled environment
® Trial and Error

® |f you think it could work, code it; you might
be right



Strategies

® “Plan to throw one away, you will anyhow”
— Fred Brooks The Mythical Man-Month

® | have discarded so many algorithms, ideas,
etc. that | have lost count

® | had much of this project done in another
system that wasn'’t desirable so | went back to
the drawing board

® Expect that some ideas will just not prove to
be useful



Useful CS Courses

CS205/CS220

® Data Structures

CS321 Analysis of Algorithms

® Asymptotic order
® (General concepts

CS330 Database

® Good models make for easy code
CS225 Machine Organization

® How I/O works and how much it costs

CS370 Intro to Operating Systems
® Additional 1/O concepts

All courses
® Software Design principles



Extensions

Use more than one camera to be able to see the entire
track

Modify the track parsing to handle switches (already
available in virtual track)

Develop a signaling or messaging system whereby
another program (that has the virtual track file) can ask
for train location and be sent the trains and their
start/end points

Possibly store additional data in the structure should it
prove useful

Remove the GUI and have the software run as a
daemon

Allow for web reporting



Advice

® As Dr. Pankratz says KEEP IT SIMPLE,
do not over complicate things

® Talk to the CS Professors, they can help
you solve a problem, get a new idea, or
just help you get your bearings

® Keep Dr. Pankratz updated



Any Questions?




