

CMUcam SDK Documentation

Developed By: Michael Konicki

 2

Index

Index……..…………………………………………………………….……..2

Introduction…………………………………………………………….……..3

ComPort Functions……………………………………………….…………...4

Internal Functions………………………………………………….……….....9

CMUCam Functions…………………………………………….…………….11

Using CMU.DLL in C++……………………………………….…………….21

Using CMU.DLL in VB 6...…………………………………………….…….22

Example Programs………………………………………………..…………...23

Advanced Concepts……………………………………………………………30

Appendix ………………………………………………………………………?

 3

Introduction

 The CMU.DLL is designed to serve as a SDK for various languages. It provides all the

comport and camera functions nessecary to make any program quickly and easily using the

CMUcam. It works in a variety of languages across the MS Visual Studio platform (code

examples come in VB and C++). Sample code (C++ and VB) as well as full documentation on

all of the functiosn within the CMU.DLL are available in this document.

Modified
Comport API

 NOTE: This dll can not be loaded onto the 4W4T robot directly and will require a

computer to communicate between the two.

 4

ComPort Functions

 The Comport functions were initially developed by Karl Riehl in 2005. They have been

slightly modified to allow for ease of use for the users. The Comport handle is now a global

variable, which means it no longer has to be passed around with every function call. The

comport initialization routines have been reconfigured to automatically setup to match the

CMUCam’s default connection settings. Several other minor changes were introduced to make

things work smoothly with the CMUCam

While these functions are left public for debugging or advanced users they should not be

used unless you know what you are doing. (NOTE: This means that the Comport functions are

no longer generic and if you wish to use comport functions you should revert to Karl’s original

API).

CMU_SetComSettings(int BaudRate, int ByteSize, DWORD Parity, DWORD StopBits)

This function sets the Comport settings so that it is properly configured for the CMUcam to

prevent the user from having to do this manually.

To set the settings manually the CMUCam uses:

 BaudRate: 115200

 ByteSize: 8

 Parity: None

 StopBits: 1

 FlowControl: None

Usage:

//This will set the Comport to the default CMUCam settings
 if(!CMU_SetComSettings(115200, 8, NOPARITY, ONESTOPBIT))

 cout << “Error Occurred” << endl;

CMU_SetTimeouts(DWORD ReadInterval, int ReadMultiplier, int ReadConstant, int

WriteMultiplier, int WriteConstant)

This function sets the timeouts for:

ReadInterval � Maximum time allowed to elapse between the arrival of two bytes on

the communications line, in milliseconds.

ReadMultiplier � Multiplier used to calculate the total time-out period for read

operations, in milliseconds.

ReadConstant � Constant used to calculate the total time-out period for read operations,

in milliseconds.

WriteMultiplier � Multiplier used to calculate the total time-out period for write

operations, in milliseconds.

 5

WriteConstant � Constant used to calculate the total time-out period for write

operations, in milliseconds.

Usage:

//This sets the timeouts to their default values
if(!CMU_SetTimeouts(MAXWORD, 0 ,0 ,0 ,0))
 cout << “Error Occurred” << endl;

CMU_ClearOutputBuffer()

The function clears the output buffer.

Usage:

//Clears the output buffer
 If(!CMU_ClearOutputBuffer())
 cout << “Error Occurred” << endl;

CMU_ClearInputBuffer()

The function clears the input buffer.

Usage:

 //Clears the input buffer
 If(!CMU_ClearInputBuffer())
 cout << “Error Occurred” << endl;

CMU_ClearBuffers()

The function clears the output and input buffers.

Usage:

 //Clears the output and input buffers
 If(!CMU_ ClearBuffers ())
 cout << “Error Occurred” << endl;

CMU_SetBuffer(int Incoming, int Outgoing)

The function sets the read and write buffer sizes to Incoming & Outgoing.

Usage:

 //Sets the buffer sizes to 1028 bytes each
 If(!CMU_ SetBuffer(1028,1028))
 cout << “Error Occurred” << endl;

 6

CMU_ClearWrite()

The function clears any waiting writes from the buffer.

Usage:

 //Clears any data in the write buffer
 If(!CMU_ ClearWrite())
 cout << “Error Occurred” << endl;

CMU_ClearRead()

The function clears any waiting reads from the buffer.

Usage:

//Clears any data in the read buffer
 If(!CMU_ ClearRead())
 cout << “Error Occurred” << endl;

CMU_ClearReadWrite()

The function clears any waiting read or writes from the buffer.

Usage:

 //Clears any data in the write and read buffers
 If(!CMU_ ClearReadWrite())
 cout << “Error Occurred” << endl;

CMU_ClearSignal()

The function lets the port know that is not available to send and receive data.

Usage:

 //Clears the signals which sets the port to unavailable
 If(!CMU_ ClearSignal())
 cout << “Error Occurred” << endl;

CMU_SetSignal()

The function lets the port know that it is available to send and receive data.

Usage:

 //Sets the signals which sets the port to available
 If(!CMU_ SetSignal())
 cout << “Error Occurred” << endl;

 7

CMU_PortOpen(char *Port)

The function opens the comm port and sets the port to default settings.

Usage:

 //Opens the port pointed to by char* Port
 If(!CMU_ PortOpen(“COM1”))
 cout << “Error Occurred” << endl;

CMU_ClosePort()

This function closes the comm port.

Usage:

 //Closes the port
 CMU_ ClosePort()

CMU_Read(unsigned char* ch, int NumBytesToRead)

The function reads in from the input buffer and places the first byte at the address that is pointed

to by the unsigned char pointer ch.

Usage:

 //Reads into buff[] buffer bytes
//int this example it reads 30 bytes off of the buffer
//and places them in buff[]

 Char buff[30];
 Int buffer 30;

 if(!CMU_Read(&buff[0],buffer)) ())
 cout << “Error Occurred” << endl;

CMU_Write(unsigned char* ch, int NumBytesToWrite)

The function writes the number of bytes starting at the memory location specified by the

unsigned char pointer to the port ch.

Usage:

//Writes into the write buffer, buff[] of size bytes
//int this example it writes 30 bytes into the Comport’s
//write buffer

 Char buff[30];
 Int size 30;

 if(!CMU_Read(&buff[0],size)) ())
 cout << “Error Occurred” << endl;

 8

CMU_InputBufferSize()

The function returns the number of bytes that are currently in the input buffer.

Usage:

//Returns the number of bytes in the Comport’s input buffer
 !if(!CMU_InputBufferSize())
 cout << “Error Occurred” << endl;

CMU_OutputBufferSize()

The function returns the number of bytes that are currently in the output buffer.

Usage:

//Returns the number of bytes in the Comport’s output
//buffer

 !if(!CMU_OnputBufferSize())
 cout << “Error Occurred” << endl;

 9

INTERNAL Functions

 The INERNAL functions handle all of the reading and processing of data from the

CMUCam. They should never be called in a program as they are called by the functions already.

They do return the full message from the CMUCam for advanced debugging purposes.

int _stdcall INTERNAL_ACKNCK(unsigned char * str, int buffer)

This function is called after a function does a CMU_Write. It waits for a ComEvent, which is
fired when something enters the input buffer. It then reads buffer number of bytes (as the length

of the return message can vary among the different commands) and stores it in str (which is for

debuging purposes, no strings are returned to the users program, it is simply for dll development

and testing). After the message is received it checks to see whether the message contains and

ACK or NCK from the CMUCam. If it is and ACK it returns a 1, for a NCK it returns a 0.

Usage:

 Char ret[30]

 //Write to CMUcam here

//Get the reply from the CMUCam and ensure it was an ACK
//else return an error

 if(!INTERNAL_ACKNCK(ret, 5))
 cout << “Error Occurred” << endl;

 10

int _stdcall INTERNAL_PACKET_PROCESS(int* slot1, int* slot2, int* slot3, int* slot4,

int* slot5, int* slot6, int* slot7, int* slot8, int* slot9, int buffer)

This function is called in place of INTERNAL_ACKNCK() when there is going to be a stream of
packets coming in from the CMUCam. It will read buffer bytes from the stream and then

process it for a packet. Based on the way the CMUCam sends data this function splits the stream

on a Chr(32) or space and will keep splitting until it hits a Chr(13) or carriage return since
this character causes strtok to fail. The function then stores the numbers it got from the stream

into the int* slot(1-9). Depending on the packet type some of these values are not used
but the function that called this one knows which values are to be used, and which are to be

ignored. Those functions also know what the numbers mean. By leaving the function generic it

works for all (M, N, C, S) packets.

Usage:

//Temp variables that get ignored
int temp1,temp2,temp3;
//Variables that contain the good data from the stream
int X1, Y1, X2, Y2, pixels, confidence;

//Get the data from the stream, have to send all 9
//ints but we are only using 6 in this example because
//we are expecting a C-Packet
if(!INTERNAL_PACKET_PROCESS(&X1,&Y1,&X2,&Y2,&pixels,

&confidence,&temp1,&temp2,&temp3, 50))
 cout << “Error Occurred” << endl;

 //At this point the data would be filled into a struct or
 //if using the function directly it could be stored or
 //directly referenced from the ints

 11

CMUCam Functions

 These functions provide access to all of the CMUCams different abilities. They are

designed to provide ease of use across the MS Studio platform. They are also designed to be

open for the user, meaning that they are not to restrictive and allow the user to accomplish the

solutions in the manner he/she would normally do.

CAM_Ping ()

This function sends a ‘\r’ command to the CMUCam which returns an ACK if the command

is understood.

Usage:

//See if the CMUCam is working
 if(!CAM_Ping())
 cout << “Error Occurred” << endl;

CAM_Init(char * port)

This function initializes the comport, char* port, with the default CMUCam settings.

Usage:

//Init CMUCam on COM1
 if(!CAM_Init(“COM1”))
 cout << “Error Occurred” << endl;

CAM_TrackLight(unsigned char mode)

This function sets the green LED on the CMUCam to off,on,auto. Auto mode is when the light

turns on when the object the camera is tracking is found within the CMUCams view. This

function is mainly used as a debugging utility since it is easy to see if the camera is working with

the green light going.

Usage:

//Turn the TrackLight on (off = MODE_OFF, auto = MODE_AUTO)
 if(!CAM_TrackLight(MODE_ON))
 cout << “Error Occurred” << endl;

CAM_Brightness(int bri)

This function sets the brightness level of the CMUCam. The values can range from 0 -255.

Usage:

//Set the brightness to 15
 if(!CAM_Brightness(15))
 cout << “Error Occurred” << endl;

 12

CAM_ClockSpeed(unsigned char speed)

This function sets the clock speed on the CMUCam to either 17, 13, 11, 9, 8, 7, or 6 frames per

second. This is not the streaming FPS rating, but how many frames the CMUCam internally

processes.

Usage:

//Turn the clockspeed to 17
 if(!CAM_ClockSpeed(FPS_17))
 cout << “Error Occurred” << endl;

CAM_Contrast(int con)

This function sets the contrast level of the CMUCam. The values can range from 0 -255.

Usage:

//Set the contrast to 150
 if(!CAM_Contrast(150))
 cout << “Error Occurred” << endl;

CAM_GetVersion(unsigned char * version)

This function returns the version of the firmware loaded on the CMUCam into the string pointed

to by version.

Usage:

 Char ver[20];

//Get and display the version of the firmware
 if(!CAM_GetVersion(ver))
 cout << “Error Occurred” << endl;
 else
 cout << “Current Version: “ << ver << endl;

CAM_HalfHorizontalMode(unsigned char mode)

This function sets half-horizontal mode on and off. On means that every other column is skipped

in processing which makes the camera run much faster. Off means the CMUCam processes

every column in an image.

Usage:

//Set HH-Mode to off (MODE_ON = on)
 if(!CAM_HalfHorizontalMode(MODE_OFF))
 cout << “Error Occurred” << endl;

 13

CAM_NoiseFilter(unsigned char filter)

This function sets the noise filter on and off.

Usage:

//Set NoiseFilter to off (MODE_ON = on)
 if(!CAM_NoiseFilter(MODE_OFF))
 cout << “Error Occurred” << endl;

CAM_MiddleMassMode(int mode)

This function sets the middlemass mode on, off, and on with servo support. When the MM-

Mode is set to on the packets returning from streams will contain two extra values that give the

centroid data. This function is automatically called when initializing the streams so users should

never need to use it.

Usage:

//Set middlemass to off (MODE_ON = on)
 if(!CAM_MiddleMassMode(MODE_OFF))
 cout << “Error Occurred” << endl;

CAM_Reset()

This function resets all the registers of the CMUCam, restores it to default settings.

Usage:

//reset the camera
 if(!CAM_Reset())
 cout << “Error Occurred” << endl;

CAM_SwitchMode(unsigned char mode)

This function sets the switch mode on and off. When switch mode is on every other packet is

sent as an S-Packet, which is a data packet. This means the packets come in like M/C, S, M/C,

S, M/C, S,..... This function should never be called except for advanced users, when streams are

needed with alternating packets there are functions set to do this automatically.

Usage:

//Set swithmode to off (MODE_ON = on)
 if(!CAM_SwitchMod(MODE_OFF))
 cout << “Error Occurred” << endl;

 14

CAM_EndPacket()

This function stops a packet stream and sets the CMUCam back into a state were it can receive

new instructions. This function also clears out the buffers automatically and it also checks to

make sure the packet stream has died.

Usage:

//End a packet stream
 if(!CAM_EndPacket())
 cout << “Error Occurred” << endl;

CAM_STR_MC()

This function initializes the mean color packet stream. This stream returns the mean and

deviation values of R, G, and B colors. To read the packets use the CAM_Get_MC() function

Usage:

//Initialize a mean color stream
 if(!CAM_STR_MC())
 cout << “Error Occurred” << endl;

CAM_Get_MC(S_PACKET* spack)

This function is called after a mean color packet stream has been started. It will rip a S-Packet

out of the stream and return it to the spack pointer.

Usage:

S_PACKET spack;

..start stream here..

//Get the packet data from the stream

 if(!CAM_Get_MC(spack))
 cout << “Error Occurred” << endl;
 else
 cout << <spack data members> << endl;

CAM_STR_TCO_Centroid()

This function initializes the track center object stream. This stream will turn on centroid data

before starting.

Usage:

//Initialize a TCO stream with centroid data
 if(!CAM_STR_TCO_Centroid())
 cout << “Error Occurred” << endl;

 15

CAM_Get_TCO_Centroid(M_PACKET* mpack)

This function is called after a track center object packet stream has been started. It will rip a M-

Packet out of the stream and return it to the mpack pointer.

Usage:

M_PACKET mpack;

..start stream here..

//Get the TCO packet w/ centroid data from the stream

 if(!CAM_Get_TCO_Centroid(mpack))
 cout << “Error Occurred” << endl;
 else
 cout << <mpack data members> << endl;

CAM_STR_TCO()

This function initializes the track center object stream. This stream will turn off centroid data

before starting.

Usage:

//Initialize a TCO stream without centroid data
 if(!CAM_STR_TCO())
 cout << “Error Occurred” << endl;

CAM_Get_TCO(C_PACKET* cpack)

This function is called after a track center object packet stream has been started. It will rip a C-

Packet out of the stream and return it to the cpack pointer.

Usage:

C_PACKET cpack;

..start stream here..

//Get the TCO packet w/o centroid data from the stream

 if(!CAM_Get_TCO(cpack))
 cout << “Error Occurred” << endl;
 else
 cout << <cpack data members> << endl;

 16

CAM_STR_TCO_Servo()

This function initializes the track center object stream. This stream will turn on centroid data

and servo support before starting.

Usage:

//Initialize a TCO stream with centroid and servo data
 if(!CAM_STR_TCO_Servo())
 cout << “Error Occurred” << endl;

CAM_Get_TCO_Servo(N_PACKET* npack)

This function is called after a track center object packet stream has been started. It will rip a C-

Packet out of the stream and return it to the npack pointer.

Usage:

N_PACKET npack;

..start stream here..

//Get the TCO packet w centroid and servo data

 if(!CAM_Get_TCO(npack))
 cout << “Error Occurred” << endl;
 else
 cout << <npack data members> << endl;

CAM_ColMode_RGB_ON()

This function sets the CMUCam to RGB mode with auto white balancing on.

Usage:

//set CMUCam to RGB with white balance on
 if(!CAM_ColMode_RGB_ON())
 cout << “Error Occurred” << endl;

CAM_ColMode_RGB_OFF()

This function sets the CMUCam to RGB mode with auto white balancing off.

Usage:

//set CMUCam to RGB with white balance off
 if(!CAM_ColMode_RGB_OFF())
 cout << “Error Occurred” << endl;

 17

CAM_ColMode_YCrCb_ON()

This function sets the CMUCam to YCrCb mode with auto white balancing on.

Usage:

//set CMUCam to YCrCb with white balance on
 if(!CAM_ColMode_YCrCb_ON())
 cout << “Error Occurred” << endl;

CAM_ColMode_YCrCb_OFF()

This function sets the CMUCam to YCrCb mode with auto white balancing off.

Usage:

//set CMUCam to YCrCb with white balance off
 if(!CAM_ColMode_YCrCb_OFF())
 cout << “Error Occurred” << endl;

CAM_AutoExposure_GainOFF()

This function sets the CMUCam's auto exposure/auto gain to off

Usage:

//set CMUCam's auto exposure off
 if(!CAM_AutoExposure_GainOFF())
 cout << “Error Occurred” << endl;

CAM_AutoExposure_GainON()

This function sets the CMUCam's auto exposure/auto gain to on

Usage:

//set CMUCam's auto exposure on
 if(!CAM_AutoExposure_GainON())
 cout << “Error Occurred” << endl;

 18

CAM_STR_TCC_Centroid(COL_PACKET* cpack)

This function initializes the track custom color stream. It is feed its custom colors by having the

user fill out a COL_PACKET and send it into the function. This stream has centroid data turned

on.

Usage:

//Initialize a TCC stream using the users colors and
//centroid data
COL_PACKET = cp;
cp.Rmax = 100;
cp.Rmin = 0;
cp.Bmax = 255;
cp.Bmin = 0;
cp.Gmax = 0;
cp.Gmin = 0;

 if(!CAM_STR_TCC_Centroid(cp))
 cout << “Error Occurred” << endl;

CAM_Get_TCC_Centroid(M_PACKET* mpack)

This function is called after a track custom color packet stream has been started. It will rip a M-

Packet out of the stream and return it to the mpack pointer.

Usage:

M_PACKET mpack;

..start stream here..

//Get the TCO packet w centroid and servo data

 if(!CAM_Get_TCC_Centroid(mpack))
 cout << “Error Occurred” << endl;
 else
 cout << <mpack data members> << endl;

 19

CAM_STR_TCC(COL_PACKET* cpack)

This function initializes the track custom color stream. It is feed its custom colors by having the

user fill out a COL_PACKET and send it into the function.

Usage:

//Initialize a TCC stream using the users colors
COL_PACKET = cp;
cp.Rmax = 100;
cp.Rmin = 0;
cp.Bmax = 255;
cp.Bmin = 0;
cp.Gmax = 0;
cp.Gmin = 0;

 if(!CAM_STR_TCC(cp))
 cout << “Error Occurred” << endl;

CAM_Get_TCC(C_PACKET* mpack)

This function is called after a track custom color packet stream has been started. It will rip a C-

Packet out of the stream and return it to the cpack pointer.

Usage:

C_PACKET cpack;

..start stream here..

//Get the TCO packet w centroid and servo data

 if(!CAM_Get_TCC(cpack))
 cout << “Error Occurred” << endl;
 else
 cout << <cpack data members> << endl;

 20

CAM_DumpFrame(unsigned char* FRAME)

This function will dump a frame from the camera to the string pointed to by FRAME. This

process, depending on frame resolution, will take several seconds. To process this data, which is

an F-Packet, it is important to note that:

 1 – New Frame

 2 – New Col

 3 – End of Frame

 34407 – Default Frame Size (Max Resolution)

 RGB (YcrCb) ranges from 16 – 255

Example:

 12rgbrgb...rgb2rgbrgb....rgb2rgbrgb.....rgbrgb3

Usage:

char FRAME[FRAME_SIZE];

//Dump a frame
if(!CAM_DumpFrame(FRAME))
 cout << “Error Occurred” << endl;

...process frame here... (see example programs)

CAM_ClosePort()

This function closes the comm port by calling CMU_ClosePort.

Usage:

 //Closes the port
 CAM_ ClosePort()

CAM_SetWindowSize(int x, int y, int x2, int y2)

This function allows the user to adjust the resolution size of the CMUCam. The default settings

are 1, 1, 80, 143. x values ranger from 1 – 80, y values range from 1 – 143.

Usage:

 //adjust the CMUCam's resolution
 if(!CAM_SetWindowSize(1,1,80,143)

 21

Using CMU.DLL in C++

 Start a new project or open a file you wish to use. It is recommended, although not

nessecary that you use the header file (CMU.H) since all the functions and typedefs are declared

for you. If you have it now is the time to add it to your project. If you don’t add the function

prototyopes from the dll you plan on using.

 example: extern “C” int _stdcall CAM_ClosePort()

After adding all the functions you wish to use you should now be able to compile the project

when you use those functions. Make sure that the dll is in the project folder or else you will get

LNK2001 errors.

It is also recommended that you include the CMU.lib file to your project. This will make

debugging much easier as you are allowed to step through the code and see what is actually

going on.

 22

Using CMU.DLL in VB

Open a new project and add a new module to your project. Now add to the module all the

functions you wish to use from the dll, examples:

'Close port (normal example)
Public Declare Function CAM_ClosePort Lib "CMU.dll" () As Long

'Initialize port and CMUCam (string example)
Public Declare Function CAM_Init Lib "CMU.dll" (ByVal port As
String) As Long

'DumpFrame (unsigned char* example)
Public Declare Function CAM_DumpFrame Lib "CMU.dll" (ByVal frame
As Long) As Long

Now you can call the functions in your VB forms like nomral functions. Again make sure you

have the dll in a place that VB can find it or you will get missing file errors.

To ease debugging you can set VB to debugging mode. Project Properties � Debugging tab.

This will allow you to step through some of the dll code which makes it easier to find errors

 23

Example Programs
Green � Comments

Red � DLL related (function calls, declerations)

Blue � Important concepts

LightShow ���� C++

Explanation
 The purpose of this program is to show basic functions in the dll and how to connect to

the CMUCam using the dll functions. All this program does is flicker the tracking light on the

camera on and off 25 times and then exits. The program is fully documented to learn from.

Image(s)
None

Source Code
//Includes
#include <windows.h>
#include <iostream.h>

//Functions in the CMU.DLL
extern "C" int _stdcall CAM_Init(char *port);
extern "C" void _stdcall CAM_ClosePort();
extern "C" int _stdcall CAM_TrackLight(unsigned char mode);
extern "C" int _stdcall CAM_Ping();

void main()
{
 int i; //Used as a loop counter

 //Initialize the comport and setup CMUCam
 CAM_Init("COM1");

 //Do a ping test to see if the CMUCam is hooked and
 //respoding, exit the program if aint working
 if(!CAM_Ping())
 {
 cout << "Ping Error" << endl;
 Sleep(500);
 return;
 }

 for(i=0;i<25;i++)
 {
 //Turn on the light
 if(!CAM_TrackLight('1'))
 cout << "ERROR" << endl;
 else
 cout << "Light On" << endl;

 24

 //Delay so the user can see the light flicker
 Sleep(300);

 //Turn off the light
 if(!CAM_TrackLight('0'))
 cout << "ERROR" << endl;
 else
 cout << "Light Off" << endl;

 //Delay so the user can see the light flicker
 Sleep(300);

 }

 cout << "And that concludes the light show, closing port and shuting
 down" << endl;

 //Shutdown the CMUCam's comport
 CAM_ClosePort();

 Sleep(4000);
 return;
}

LightShow ���� VB

Explanation
 Similar to the program above but in VB 6.

Image(s)
Tracking Light off

Tracking Light On

 25

Source Code
Module Code

'Close port
Public Declare Function CAM_ClosePort Lib "C:\CMU.dll" () As Long

'Initialize port and CMUCam
Public Declare Function CAM_Init Lib "C:\CMU.dll" (ByVal port As String) _
As Long

'TrackLight
Public Declare Function CAM_TrackLight Lib "C:\CMU.dll" (ByVal ByteArr As _
Byte) As Long

'Ping for testing purposes
Public Declare Function CAM_Ping Lib "C:\CMU.dll" () As Long

'Sleep function
Public Declare Sub Sleep Lib "kernel32" (ByVal dwMilliseconds As Long)

Form Code
Private Sub Form_Load()
 'Open the comport for business
 CAM_Init ("COM1")
End Sub

Private Sub Form_Unload(Cancel As Integer)
 'shutdown the comport
 CAM_ClosePort
End Sub

Private Sub lightclick_Click()
 Dim t As Integer
 Dim i As Integer

 'Loop through and change the color
 For i = 0 To 15
 'turn the light on and show that on the form

 26

 CAM_TrackLight (Asc("1")) 'Call the dll function to turn the light on
 sh1.BackColor = RGB(0, 255, 0)
 Me.Refresh 'Refresh the form so the shape changes color

 'Delay a little so you can see the change
 Sleep (500)

 'Turn the light off and show it on the form
 CAM_TrackLight (Asc("0"))'Call the dll function to turn the light off
 sh1.BackColor = RGB(0, 75, 0)
 Me.Refresh 'Refresh the form so the shape changes color

 'Delay a little to see the change
 Sleep (500)

 Next i

 MsgBox "Demo Done"
End Sub

Private Sub lightoff_Click()
 'Turn the light off and show it on the form
 CAM_TrackLight (Asc("0"))
 sh1.BackColor = RGB(0, 75, 0)
 Me.Refresh
End Sub

Private Sub Lighton_Click()
 'Turns the light on and updates the form
 CAM_TrackLight (Asc("1"))
 sh1.BackColor = RGB(0, 255, 0)
 Me.Refresh
End Sub

 27

DumpFrame ���� VB

Explanation
 This program dumps a frame from the camera by using the dll for all the function calls.

Image(s)
Dumping a Frame

Source Code
Module Code

'Close port
Public Declare Function CAM_ClosePort Lib "C:\CMU.dll" () As Long

'Initialize port and CMUCam
Public Declare Function CAM_Init Lib "C:\CMU.dll" (ByVal port As String) _
As Long

'DumpFrame
Public Declare Function CAM_DumpFrame Lib "C:\CMU.dll" (ByVal frame As Long)_
As Long

'Ping for testing
Public Declare Function CAM_Ping Lib "C:\CMU.dll" () As Long

Form Code
Option Explicit

Private Sub DF_Click()
 Dim fr(40000) As Byte 'Byte array that holds the image
 Dim i As Integer 'catches return values from dll functions
 Dim started As Boolean 'image processing
 Dim col As Integer 'image processing
 Dim row As Integer 'image processing
 Dim x As Long 'image processing

 'Ping the camera before we try a dumpframe

 28

 'to make sure everything is hooked up right

 i = CAM_Ping 'Ping the camera

 'Update the text box
 If i = 1 Then
 Text1.Text = "Ping....OK" & vbCrLf
 Text1.Refresh
 Else
 Text1.Text = "Ping....FAILED" & vbCrLf
 Text1.Refresh
 End If

 'Update the textbox
 Text1.Text = Text1.Text & "Dumping Frame...."
 Text1.Refresh

 'Using VB pointers get our frame
 i = CAM_DumpFrame(VarPtr(fr(0)))

 'Update the textbox
 If i = 1 Then
 Text1.Text = Text1.Text & "OK" & vbCrLf
 Text1.Refresh
 Else
 Text1.Text = Text1.Text & "FAILED" & vbCrLf
 Text1.Refresh
 End If

 col = 0 'used for image display
 row = 0 'used for image display
 started = False

 Pic.ScaleMode = vbPixels

 For x = 1 To 34407
 '1 = start of frame
 If fr(x) = 1 Then
 Pic.Cls
 started = True
 '2 = new col
 ElseIf fr(x) = 2 Then
 col = col + 2
 row = 0
 '3 = end of frame
 ElseIf fr(x) = 3 Then
 Text1.Text = Text1.Text & "Image Dump Complete"
 Exit Sub
 Else
 'Make sure we started by seeing a 1
 'before adding stuff to the picture box
 If started = True Then
 'have to double up the columns
 Pic.PSet (col, row), RGB(fr(x), fr(x + 1), fr(x + 2))
 Pic.PSet (col + 1, row), RGB(fr(x), fr(x + 1), fr(x + 2))
 row = row + 1 'go to next row
 x = x + 2 'bump x since data is stored as rgb we ripped

 29

 '3 off so 2 here one at the next x = 3
 End If
 End If
 Next x

End Sub

Private Sub Form_Load()
 'open and initialize the CMUCam and the Comport
 CAM_Init ("COM1")
End Sub

Private Sub Form_Unload(Cancel As Integer)
 'close out the comport
 CAM_ClosePort
End Sub

 30

Usefull Concepts

 This section will discuss much of the usefull concepts and development ideas associated

with the CMUCam and the CMU.DLL.

CMUCam
 Looping Input � When dealing with the CMUCam it is important to note that some

 commands, such as MC, TW, TC, actually start the CMUCam in a data dumping loop.

 This means that once these commands are received the CMUCam will continuosly dump

 packets down the comport. Any command the user sends will generally not get received

 as the CMUCam can only handle communications one-way on the comport. However

 that command that is sent during the loop will also break the loop as the CMUCam tries

 to grab the command, hence stopping the loop to do so. Unfortunatly that command will

 never read the camera. Therefore it is important to understand that if you start a loop

 either in the CMU.DLL or in your own programs it is important to end the loop using a

 ‘\r’ or ping command. Then allow the CMUCam to sit for a moment and then send the

 comman you wish the CMUCam to respond to.

 CMU.DLL EndPacket example is how the dll shutsdown a packet loop:
 if(!CAM_Ping()) //May not succeed on first try due to the
 //massive amount of incoming data
 {
 Sleep(400); //let the comport clean itself...
 if(!CAM_Ping()) //and try again
 return 0;
 else
 return 1;
 }
 else
 {
 return 1; //If it did succed the first time return ok
 }

 31

 Processing a frame dump � Another complex requirement of the CMUCam is

 processing a frame dump from the CMUCam. When you call the DumpFrame in the

 CMU.DLL or issue a “DF” directly you are going to get a massive string of data. It is

 important to know to process this string. The F-Packet, which is what the frame is,

 comes in as: 1,2,r,g,b…,r,g,b,2,r,g,b,….,r,g,b,3.

 The Chr(1) signals a new frame, this is where you should start processing and displaying

 the following RGB values. Data before this marker can include the ACK message and

 sometimes some other junk data.

 The Chr(2) signals a new column at this point when dumping an image you need to

 advance your column counter

 The Chr(3) signals the end of the frame, at this point you can exit the loop you are in for

 the frame processing.

 Example Code of Frame Processing (VB)
 For x = 1 To 34407 ‘344007 is the max size a frame can be
 '1 = start of frame
 If fr(x) = 1 Then
 Pic.Cls
 started = True
 '2 = new col
 ElseIf fr(x) = 2 Then
 col = col + 2 ‘since the CMUCam expects you to double
 ‘up columns bump counter by 2
 row = 0
 '3 = end of frame
 ElseIf fr(x) = 3 Then
 Text1.Text = Text1.Text & "Image Dump Complete"
 Exit Sub
 Else
 'Make sure we started by seeing a 1
 'before adding stuff to the picture box
 If started = True Then
 'have to double up the columns use (col + 1)
 Pic.PSet (col, row), RGB(fr(x), fr(x + 1), fr(x + 2))
 Pic.PSet (col + 1, row), RGB(fr(x), fr(x + 1), fr(x + 2))
 row = row + 1 'go to next row
 x = x + 2 'bump x since data is stored as rgb we
 ‘ripped 3 off so 2 here one at the next x
 ‘= 3
 End If
 End If
 Next x ‘advance x for the 3rd time (rgb 3 bumps)

