MultiModem Class for

Microsoft Visual Basic
Contents
	Introduction…………………………………………………………………………
	3

	Functions…………………………………………………………………………...
	4

	
	CheckListMessages…………………………………………………………….
	4

	
	CheckMessages………………………………………………………………...
	5

	
	Connect……………………………………………………………………….....
	5

	
	DeleteMessage………………………………………………………………….
	6

	
	Disconnect……………………………………………………………………….
	6

	
	GetClock…………………………………………………………………………
	7

	
	GetManufacturerID……………………………………………………………..
	7

	
	GetModelID……………………………………………………………………...
	8

	
	GetRevisionID…………………………………………………………………...
	8

	
	GetSerialNumber………………………………………………………………..
	9

	
	GetSignalQuality………………………………………………………………..
	9

	
	GetSubscriberNumber………………………………………………………….
	10

	
	ListMessages……………………………………………………………………
	10

	
	ReadMessage…………………………………………………………………...
	11

	
	SendATCommand………………………………………………………………
	12

	
	SendMessage…………………………………………………………………...
	13

	
	SendMessageTPDU……………………………………………………………
	13

	
	SetCharacterSet………………………………………………………………...
	14

	
	SetClock………………………………………………………………………….
	15

	
	SetEcho………………………………………………………………………….
	15

	
	SetNewMessageIndication…………………………………………………….
	16

	
	
	

	
	
	

Introduction
The MultiModem Class for Microsoft Visual Basic is a class designed to implement specific functionality of MultiTech’s line of wireless GSM/GPRS modems. It has been designed around MultiTech’s Reference Guide and has been tested with MultiTech’s MultiModem GPRS USB wireless modem. However, this does not necessarily preclude it from working with other wireless modems if they use the same AT Commands.
Specifically, the MultiModem Class has been designed for the express intent of SMS text messaging, and it has been tailored for these purposes. However, it is also designed to be expandable and should easily adapt to new AT Commands that a programmer might wish to incorporate.

A programmer wishing to incorporate the class into a Visual Basic 6.0 application should first create the application and then add the files MultiModem.cls and Queue.cls to the project. (using Project (Add File…)
A programmer wishing to incorporate the class into a Visual Basic 2005 application should create the application and then add the file MultiModem.vb to the project. (using Project (Add Existing Item…)
See also the MultiModem Demo Application for an example of how to use the MultiModem class. It is useful, in particular, to look at the event handler for the Connect button to see the process of connecting, disabling the echo, and setting new message indication settings. Alternatively, one could start with the Demo Application and build up from here.
Functions
CheckListMessages

Checks the list message queue. This is called repeatedly after calling ListMessages. See the MultiModem Demo Application for an example of how a Timer can be used to call CheckListMessages after calling ListMessages.

Syntax:
Public Function CheckListMessages(_

ByRef index As Integer, _

ByRef unread As Boolean, _

ByRef number As String, _

ByRef timestamp As String, _

ByRef msg As String _

)
Parameters:
index (Integer)

Index of message, if there is one
unread (Boolean)

True if message is unread, False if message is read

number (String)

Phone number (address) of sender
timestamp (String)

Time stamp of message

msg (String)

Contents of message
Returns:

True if there is a message, False otherwise
CheckMessages

Checks the incoming message queue for any new messages.
Syntax:
Public Function CheckMessages(_

ByRef index As Integer _

)

Parameters:
index (Integer)

Index of message, if there is one

Returns:

True if there is a message, False otherwise
Connect
Attempts to connect to the serial port specified by port.
Syntax:
Public Function Connect(_

port As Integer _

)

Parameters:
port (Integer)

Port number to connect to
Returns:

True if successful, False if unsuccessful

DeleteMessage
Deletes the SMS message at location index from the modem.
Syntax:
Public Function DeleteMessage(_

index As Integer _

)

Parameters:
index (Integer)

Index of message to delete
Returns:

True if successful, False if unsuccessful

Disconnect
Attempts to disconnect from the currently open serial port.

Syntax:
Public Function Disconnect()

Returns:

True if successful, False if unsuccessful

GetClock
Retrieves clock reading from modem.
Syntax:
Public Function GetClock(_

ByRef clock As String _

)

Parameters:
clock (String)

Clock reading if successful
Returns:

True if successful, False if unsuccessful

GetManufacturerID
Retrieves Manufacturer ID of modem.
Syntax:
Public Function GetManufacturerID(_

ByRef manufacturer As String _

)

Parameters:
manufacturer (String)

Manufacturer ID if successful
Returns:

True if successful, False if unsuccessful

GetModelID
Retrieves Model ID of modem.
Syntax:
Public Function GetModelID(_

ByRef model As String _

)

Parameters:
model (String)

Model ID if successful
Returns:

True if successful, False if unsuccessful

GetRevisionID
Retrieves Revision ID of modem.
Syntax:
Public Function GetRevisionID(_

ByRef revision As String _

)

Parameters:
revision (String)

Revision ID if successful
Returns:

True if successful, False if unsuccessful

GetSerialNumber
Retrieves Serial Number of modem.
Syntax:
Public Function GetSerialNumber(_

ByRef serial As String _

)

Parameters:
serial (String)

Serial Number if successful
Returns:

True if successful, False if unsuccessful

GetSignalQuality
Determines the received signal strength.
Syntax:
Public Function GetSignalQuality(_

ByRef strength As Integer _

)

Parameters:
strength (Integer)

Signal strength if successful
Returns:

True if successful, False if unsuccessful

GetSubscriberNumber
Retrieves Subscriber Number of modem.
Syntax:
Public Function GetSubscriberNumber(_

ByRef subscriber As String _

)

Parameters:
subscriber (String)

Subscriber Number if successful
Returns:

True if successful, False if unsuccessful

ListMessages
Issues command to list all saved SMS messages. Repeated calls to CheckListMessages are necessary to view the content of the saved messages. See the Demo Application for an example of how to do this with a Timer.
Syntax:
Public Function GetSubscriberNumber()

Returns:

True always
ReadMessage
Reads the SMS message at index.

Syntax:
Public Function CheckListMessages(_

index As Integer, _

ByRef unread As Boolean, _

ByRef number As String, _

ByRef timestamp As String, _

ByRef msg As String _

)

Parameters:
index (Integer)

Index of message to read
unread (Boolean)

True if message is unread, False if message is read

number (String)

Phone number (address) of sender
timestamp (String)

Time stamp of message

msg (String)

Contents of message
Returns:

True if successful, False if unsuccessful

SendATCommand
Sends an AT Command to the serial port. See the code for the MultiModem Class for examples of usage.
Syntax:
Public Function SendATCommand(_

command As String, _

ByRef response As String, _

lines As Integer _

)

Parameters:
command (String)

AT Command to send (no carriage return)
response (String)

response from modem, if successful

lines (Integer)

Number of lines expected back from modem (not including any OKs)

Returns:

True if successful, False if unsuccessful
SendMessage
Sends a text mode SMS message.
Syntax:
Public Function SendMessage(_

phonenumber As String, _

msg As String _
)

Parameters:
phonenumber (String)

Phone number to send message to

msg (String)

Text of message
Returns:

True if successful, False if unsuccessful
SendMessageTPDU
Sends a pdu mode SMS message.
Syntax:
Public Function SendMessageTPDU(_

phonenumber As String, _

msg As String _
)

Parameters:
phonenumber (String)

Phone number to send message to (make sure it is exactly 10 digits)

msg (String)

Message (as a hexadecimal text string) (e.g. “7E3B29”)
Returns:

True if successful, False if unsuccessful
SetCharacterSet
Sets character set of modem for reading/writing messages in text mode. If the mode is a text mode then calls to ReadMessage and SendMessage will read the message as text. If the mode is hexadecimal then calls to ReadMessage and SendMessage will use strings of hexadecimal characters. (e.g. “7E3B29”)
Syntax:
Public Function SetCharacterSet(_

characterset As String _
)

Parameters:
characterset (String)
Character Set to use
Returns:

True if successful, False if unsuccessful
Note:

AT+CSCS=? will give a list of valid character sets, these include: "GSM","PCCP437","CUSTOM","HEX"
"PCCP437" is the default
SetClock
Sets clock on modem. Uses a string formatted as YY/MM/DD,HH:MM:SS.

For example, the current time can be formatted in this way using the function call:

Format(Now, "yy/MM/dd,hh:mm:ss")

Syntax:
Public Function SetClock(_

clock As String _
)

Parameters:
clock (String)

Time to set modem to
Returns:

True if successful, False if unsuccessful
SetEcho
Sets echoing of AT commands to on or off. Other functions in the MultiModem class make the assumption that echoing is turned off. This function should be called after calling Connect in order to turn echoing off.

Syntax:
Public Function SetEcho(_

echo As Boolean _
)

Parameters:
echo (Boolean)

True to turn echo on, False to turn echo off
Returns:

True if successful, False if unsuccessful
SetNewMessageIndication
Sets behavior of New Message Indications. This must be set to 1 for CheckMessages to work, although one could write a "Check Messages" routine to work with nmi = 2. Refer to the AT Commands Reference Guide for more information. This should be called after connecting and after turning echoing off.
Syntax:
Public Function SetNewMessageIndication(_

nmi As Integer _
)

Parameters:
nmi (Integer)

Behavior of New Message Indications

Returns:

True if successful, False if unsuccessful
Note:

Values from documentation of AT Commands from MultiTech:
0 No SMS-DELIVER indications are routed.

1 SMS-DELIVERs are routed using unsolicited code: +CMTI: “SM”,<index>

2 SMS-DELIVERs (except class 2 messages) are routed using unsolicited code: +CMT:
3 Class 3 SMS-DELIVERs are routed directly using code in <mt>=2

MultiModem Class for Microsoft Visual Basic
6

