Messaging Server Technical Reference

Christopher Kratz

5 – 03 – 2007

Messaging Server
3
1.1 Overview
3
1.2 Message Passing
3
1.2.1 Server Commands and Message Formats
4
1.2.2
Server Communication Protocol
5
1.2.3
Server Functional Diagram
5

Messaging Server

1.1 Overview

The Messaging Server is implemented through the following files.

Test.cpp
Server main and thread functions.

MPS.h

Standard functions for processing messaging and data commands.

MPS.cpp

DataServer.h
Class and struct definitions for messaging, queues, data, ect.

DataServer.cpp

The servers responsibility is to manage communications to clients connected to the system. It contains message queues for each known application that is to connect to the server. Right now the current version has all the thread startup for communicating with the clients hardcoded in Test.cpp. The messaging queue construction is hardcoded into DataServer.cpp in the cDataServer constructor.

Ideally it would be modified so that different configurations would be loaded from a file that defines the different processes that will connect to the server. That way all the threads and message queues would be created dynamically without having to alter the code.

Alternatively the server could have its own client thread and message queue hardcoded and then when clients want to connect they send a connect command to the server which would create the communication thread and messaging queue at that time.

The server currently only supports communication through named pipes. Another addition to the system would be adding functionality to pass messages through means other than named pipes. The addition of communication through sockets would enable applications on other machines to connect to the system. If the server is able to accept commands to add new clients, internet clients could automatically be added to the system while it is running. Further, it could be expanded to use unix style pipes for more compatibility with different systems. During project defense it was asked why the Windows messaging queue was not utilized for message passing. This, while being easy to implement, would limit messaging to processes on the same machine and it would limit the system to Windows machines.

The data functions of the server are about half written. They were abandoned during original development because they were not necessary and they would have taken too long to build.

1.2 Message Passing

In the current version of the messaging server, commands and messages are sent to the server and messages are sent to the clients through named pipes. However the named pipes could potentially be replaced by any communication method such as TCP sockets.

1.2.1 Server Commands and Message Formats

Command Number (Hex)
Description
Data Format
Response

00
Send Message
0x00 [DESTINATION NAME] Ox00 [SERVICE CODE X2 BYTES] [MESSAGE BYTES]
0x01 – Failed to Post Message

0x00 – Post Succeeded

01
Get Message
0x01
[RETURN CODE x2 BYTES] [REMAINING MESSAGES x2 BYTES] [SERVICE CODE x2 BYTES] [FROM] 0x00 [MESSAGE DATA]

02
Post Multicast Message
0x02 [NUMBER OF DESTINATIONS x2 BYTES] [DESTINATION 1] Ox00 [DESTINATION 2] 0x00 [DESTNATION N] 0x00 [SERVICE CODE X2 BYTES] [MESSAGE BYTES]
0x00 - [# MESSAGES POSTED X 2 BYTES] – Message Successfully sent to this number of recipients.

0x01 – Error Allocating memory for operation.

0x02 – No recipients successfully received the message.

10 (*)
Add New Data Row
0x10 [TABLENAME] 0x00 [COLUMN_NAME] 0x00 [LENGTH OF VALUE 2 BYTES][VALUE] [COLUMN_NAME].......
0x00 – Success

0x01 – No Such table

0x02 – Error parsing command

0x03 – Add failed

0x04 – Size mismatch

0x05 – Bad column

11 (*)
Find Rows
0x11 [TABLENAME] 0x00 [COLUMN_NAME] 0x00 [LENGTH OF VALUE 2 BYTES][VALUE]
0x00 [NUMBER OF RESULTS X 2 BYTES] [WIDTH OF ROW X 2 BYTES] [DATA]

12 (*)
Get Table Schema
0x12 [TABLENAME] 0x00
0x00 [# OF COLUMNS X 2 BYTES] [COLUMN NAME] 0x00 [START X 2 BYTES] [WIDTH X 2 BYTES]

13 (*)
Delete Row
0x11 [TABLENAME] 0x00 [COLUMN_NAME] 0x00 [LENGTH OF VALUE 2 BYTES][VALUE]
0x00 – Success

0x01 – No such table

0x02 – Malformed request

0x03 – Bad Column

0x04 – Error deleting row

(* These commands invoke functionality that is not completed and has not been thoroughly tested. Do not use theses commands.)

1.2.2 Server Communication Protocol

The common pattern of communication is as follows. The server sits in a blocking read situation and waits for the client to send a command. The client then sends command data to the server, and will then wait in a blocking read situation for a response to the server. Meanwhile the server processes the command, takes whatever necessary action and generates a response. The response is sent back to the client, who reads the data and continues. The server thread returns to its blocking read situation and waits for the next command from the client.

1.2.3 Server Functional Diagram

[image: image1.jpg]WORKER PROCESSES

CLIENT 1 PROCESS

CLIENT 2 PROCESS

‘MU

~I L}

PIPE OR
SOCKET

COMMUNICATION

=

LTI-PROCESS SERVER MODEL

THREA

CLIENT

MPS API
FUNCTIONS

THREA

CLIENT

D

