Computer-Controlled Railroad Simulator

User's Guide
Adrian Anderson

May 2008
Table of Contents

Setup


Installation
3

Building the Source Code
3
Usage


Demonstration
4

Simulator
4

Track Editor
7

Tips and Tricks
7
Guide


Making a Track


Parts of a Track
9


Entering the Values
10



Tips and Tricks
12

Communication
NMRA Speed/Direction Change Packet
12

NMRA Reset Packet
12

NCE Turnout Change Packet
13



NCE Sensor Data Retrieval Packet
13

Train Operating System
13
Known Issues
15
Chapter 1 – Setup
Installation

To install the CCR Simulator, take the following steps:

· Go to the "Download Project" page of the CCR project website.

· Download the file "CCRSimulator.zip" by clicking on the page's first link.
· Unzip "CCRSimulator.zip" using WinZip or any other program that can decompress ZIP archives.

· Run RailroadSimulator.exe
Building the Source Code

The CCR Simulator was built using Visual Basic 2005, so a version of VB 2005 is required to build the source code. The Express Edition is available for download on Microsoft's Visual Studio website.

The source code for the CCR Simulator is available for download on the project website. In the "Download Project" webpage, download "CCRSimFull.zip" (the second link on the page) and unzip it.
Open "RailroadSimulator.sln" in Visual Basic 2005. Click Build>Build RailroadSimulator to build the CCR Simulator. The built executable will be located in the "bin" directory.
Chapter 2 – Usage
Demonstration
To run a basic demonstration of the CCR Simulator and its basic features, take the following steps:
1. Install the CCR Simulator (see Chapter 1).

2. Open RailroadSimulator.exe.

3. Click Track>Load Track...

4. Open the default track file, "track.xml", which is located in the same folder as the CCR Simulator.

5. In the "Trains" section of the window, click "Add".
6. Set "Start Segment" to "CD", "Last Junction" to "C", and "Start Position" to 10. Click "OK".
7. Click "Start". The blue train will move around the red track.

8. Check the status window to see when the train runs over sensors.

9. In the "Trains" section, click "Speed". Enter "16" and click "OK".

10. In the "Turnouts" section, click "5" in the list and click the "Toggle" button. Instead of moving around the inner loop, the train will now start moving around the outer loop.

11. If the turnout #5 did not finish changing when the train approached, the train might have crashed! If it did, add a new train and start the simulation again as in steps 5 through 7.

12. In the "Turnouts" section, click "2", then "Toggle" to switch turnout #2.

13. In the "Trains" section, click the "Direction" button. The train will come to a halt and begin moving backwards.

14. Change the simulation speed using the "Speed" menu.

15. In the "Trains" section, add a new train as you did in steps 5 through 7. Watch the two trains crash!
Simulator

The simulator is the main window of the program. In the simulator window, the trains run along the tracks in a graphical display, and the user can manipulate the track and train using the menu options and buttons.
File Menu

Exit – Close the CCR Simulator

Track Menu
Load Track – Loads a new track from an XML file. If a simulation is currently running, loading a new track will stop the simulation and remove all of the trains.

Track Editor – Loads the Track Editor. If a track has been loaded in the Simulator window, then that same track will be loaded in the Track Editor window. See "Making a Track" in Chapter 3 for more details.
Speed Menu

· The speed menu speeds up and slows down time in the simulation. Specifically, it increases or decreases the amount of time between each of the simulator's timer ticks.
Very Slow – One timer tick every five seconds.
Slow – One timer tick per second.
Normal – One timer tick every three-tenths of a second.
Fast – Ten timer ticks per second.
Very Fast – One timer tick per millisecond, or as fast as your computer will allow.
Custom – This allows you to input the number of milliseconds between timer ticks manually.

Communication Menu
· See "Communications" in Chapter 3 for more detailed instructions.

Create Named Pipe – Open communications with client programs.

Wait for Connections – Begin reading data from client programs.

Disconnect Named Pipe – End communications.

Disasters Menu

· The purpose of the disaster menu is to test what will happen when things go wrong. For example, a program may have to compensate for when a train does not respond to signals, and there is a disaster to recreate this situation.
Unresponsive Train – The selected train's speed and direction can no longer be altered.
Broken Turnout – The selected turnout will no longer move.

Unresponsive Sensor – The selected sensor will no longer activate.

Random – One of the previous three events will happen to a random train, turnout, or sensor.

Simulator Section
· The Simulator section of the window is where the track and trains are graphically drawn.
· The red lines are sections represent track.
· The green circles represent places where tracks start and/or stop.

· The red circles represent sensors.

· The blue circles connected by a blue line represent a train.

Sensors Section
· This section displays all of the sensors on the track.
Turnout Section
· This section shows all of the turnouts that can be switched.

Toggle – Switch the selected turnout. This is not an instantaneous change unless the simulation has not yet started.
Train Section
· This section shows all of the trains on the track and gives options for manipulating them.

Add – Add a new train to the track. A window will pop up asking for starting location, among other things.
· Train Name – A name that uniquely identifies this train.

· Train ID – The hardware ID for the given train. If communicating with other programs, the ID will be used to identify the train.

· Start Segment – The segment that the train's front end starts on. In this case, the "front end" is the end that is in the direction of the train's movement.
· Last Junction – The last junction the train's "front end" would have passed if it had been moving the whole time. This is used to tell the train which direction to travel in.

· Start Position – The distance the train's "front end" is away from the Last Junction.

· Train Length – The length of the train, or the distance from the front to the rear ends.

· Speed – The train's starting speed. This number is the speed as the train's hardware would understand it, often going from 0 to 15.
· Direction – "Forward" if the train's front end is actually moving forward, "reverse" if it is moving backward.

Remove – Removes the selected train from the track.

Direction – Reverses the train's direction. If the simulation has been started, then the train will slowly come to a halt and pick up speed as it moves backward.

Speed – Prompts the user for a new speed, and sets the selected train's speed to that if the user clicks "OK". The speed value is the speed as the train's hardware would understand it, often going from 0 to 15. If the simulation has been started, the train will change speed gradually.
Status Section
· This section displays all of the status changes that have happened on the track recently.

Start – Start the simulation.

Stop – Pause the simulation. To reset the track data, load a new track in the Track menu.

Clear – Erases the contents of the status field.

Track Editor

The Track Editor provides a simple database-like environment to edit the track data. Though it is possible to edit the track data outside of the track editor, it is not recommended because the track data performs extensive validation on the data and always formats the file correctly.
For more information on creating a custom track, see "Making a Track" in Chapter 3.
File Menu
New – Clears all the data in the Track Editor.

Load – Reads an XML track file and displays the data in the grids.

Save – Saves the data in the grids to the file that was last loaded or last saved to. If no such file exists, the Track Editor will prompt for a save location.
Save As – As Save, but always prompts for a location.

Close – Close the Track Editor.

Table
Add Row – Adds a row to the selected grid.

Delete Row – Deletes the selected row.
Tips and Tricks

Simulator
· To erase the track and trains, select "Load Track" in the Track menu. 

· If no train is selected and you choose to make a train unresponsive in the disaster menu, a random train will stop working. The same is true for turnouts and sensors.

· Trains will be added with default values if you click the "Add" button and click "OK" without filling anything in. It's not helpful for precisely placing trains, but it's a quick way to add a lot of trains.

· You can change the images used for junctions, trains, and sensors by replacing the three images in the folder containing RailroadSimulator.exe. The images should have the same filenames as the originals, and they should be 7 pixels tall, 7 pixels wide.

Track Editor
· You can add rows to a grid by typing values in the blank row at the bottom. You can also add rows by pressing Ctrl-A.

· Similarly, deleting all of the values in the last row will remove the row. Rows can also be deleted by pressing Ctrl-D.
Chapter 3 – Guide

Making a Track
Part 1: Parts of a Track

There are three fundamental parts to every track: the junctions, the segments, and the turnouts.

Junctions are the parts of track where multiple sections of track are joined or where a section of track ends.

Each junction has coordinates that tell the simulator where to draw them on the screen. These coordinates are arbitrary, but should be to scale relative to each other. The coordinates have no impact on how the trains move, however, they are just for drawing.
Segments represent any section of track on the railroad. They must connect two junctions exactly. One is specified as "Node 1" and the other as "Node 2". The only difference between the two is that the positions of sensors (among other things) are defined as distance from Node 1.
Unlike junctions, segments do not need coordinates to be drawn. A segment connects two junctions, so it simply draws a line from one junction to another. However, segments each have a length. The length can be in any unit as long as all lengths in the track use the same units. In addition, when trains are defined, they use the same length unit as the track.
Turnouts are used to connect segments to other segments at junctions. All turnouts must be at junctions. A turnout can de defined without a junction if two or fewer segments are connected to it. However, if there are more than two, than the train needs some way to decide which section of the track is the "next" section, and this is what turnouts are used for.

By default, a turnout connects the "source" segment to the "destination" segment, and vice versa. However, turnouts can be switched so that the "source" instead connects to the "branch" segment. In short, trains coming from the source will go to the destination or the branch, depending on which way the turnout is set, and trains coming from the branch or destination will always go to the source. 
The branch can be left blank, however, meaning that the turnout cannot be switched. This is useful in defining tracks that have a non-moving four-way intersection, for example, because the turnouts will tell the train which segments the train can and cannot move to. Trains cannot make an abrupt 90-degree turn at a four-way intersection, and turnouts prevent the trains from making "illegal" moves like that.

Turnouts can also have a hardware ID that is used to identify them when communicating with external programs.
There are two more parts to tracks: the sensors and the bends. These parts do not change the way the track is shaped like the other three.

Sensors are attached to segments, and they activate when a train runs over them. Segments must be given a segment and a position value, which represents the distance from that segment's "Node 1". A segment also has an AIU value, which is used to identify it when communicating with external programs.
Bends only change the appearance of the track on the simulator window. Each bend has its own position coordinates like the junctions, but they are connected to segments. Bends also have positions on the segment (the distance from Node 1), so that the drawing routine knows how much distance that bend spans. In addition, each bend has a specific order, and the segment will be drawn from Node 1 to the first in the order, to the second, through each bend, then to Node 2. 

In short:
· Junctions are dots on the screen.

· Segments connect junctions and represent tracks.

· Turnouts are located at junctions and tell the train which segment is next.

· Sensors sit on segments.

· Bends are used to make bends in segments so that they look better on the screen.

Part 2: Entering the Values

Here is what these concepts correspond to in the Track Editor:

Junctions

Name (Primary Key)


A name that uniquely identifies this junction.

xPos, yPos (Numeric, Non-Null)


The position coordinates for the junction.
Segments

Name (Primary Key)


A name that uniquely identifies this segment.

Node 1, Node 2 (Foreign Key: Junction Name, Non-Null)


The junctions that mark the start and end of the segment.


Length (Numeric, Non-Null)



How long this sensor is.
Turnouts

Name (Primary Key)



A name that uniquely identifies this turnout.

Junction (Foreign Key: Junction Name, Non-Null)



The junction where this turnout is located.


Source, Destination (Foreign Key: Segment Name, Non-Null)



The two segments that this turnout connects by default.


Branch (Foreign Key: Segment Name)

An optional third segment that can be connected to the first two. If left blank, then this turnout cannot change.

ID (Numeric)

A hardware identifier that is used to reference this turnout when connected to other programs.

Sensors

Name (Primary Key)



A name that uniquely identifies this sensor.

Segment (Foreign Key: Segment Name, Non-Null)



The segment that this sensor is connected to.


Position (Non-Null, Numeric)



The location of this sensor, in distance from Node 1.

AIU

A hardware identifier that is used to reference this turnout when connected to other programs.


Pin



A hardware value that is currently unused by the simulator.
Bends

Segment (First Primary Key, Foreign Key: Segment Name)



The segment that is being bent.


Order (Second Primary Key, Numeric)

Used to order the bends. The first in order will connect to Node 1, the last to Node 2, and every other bend to the two bends adjacent to it in the order.


Position (Numeric, Non-Null)



Distance from Node 1 to this bend.


xPos, yPos (Numeric, Non-Null)


Position coordinates for this bend.

(Explanation of Terms Used)

Numeric – Values must be numbers.

Non-Null – Blank values are not allowed.

Unique – No two records can have the same value, unless they're both blank.

Primary Key – Uniquely identifies each record. Primary keys must be unique and non-null.

Foreign Key – Each entry must have a corresponding entry in a different table if they are not blank. For example, a segment's "node 1" field must be an existing junction.

Part 3: Tips and Tricks

· To make a loop, there must be at least two junctions. A segment cannot go from segment A to segment A; it must go from A to B back to A.
Communication
The CCR Simulator uses named pipes to communicate and receive hardware instructions. The pipe's name is "\\.\pipe\MyPipe". To create the duplex pipe, click Communications>Create named pipe. By clicking Communications>Wait for connections, the CCR Simulator will being reading from the pipe.
The CCR Simulator creates a thread to do all of the pipe reads because the ReadPipe function performs a blocking read that would otherwise prevent the program from doing anything else.

Anything connected to the named pipe can send binary commands to the simulator. Here is a list of commands accepted by the CCR Simulator:

NMRA Speed/Direction Change Packet
Binary Packet Format: 1010-0011-TTTT-01D0-SSSS
TTTT 
The train ID. The CCR simulator will change the train whose ID matches this value, converted to decimal.
D
The direction. 1 means forward, 0 means reverse.

SSSS
The speed plus 2 (0 and 1 have special meanings).

NMRA Reset Packet

Binary Packet Format: 1010-0011-0000-0000-0000-0000-0000-0000
Sends a signal to all trains to stop immediately.
NCE Turnout Change Packet
Binary Packet Format: 1001-0011-xxxx-xxxx-xxTT-TTTT-xxxx-xTTS
TTTTTT 
The turnout ID. The number is broken up in the packet, but forms the ID when rejoined.

S 
The turnout state. 0 connects source to destination, 1 connects to branch.
NCE Sensor Data Retrieval Packet

Binary Packet Format: 1001-0011-xxxx-xxxx (...)
This is a request to probe all of the sensors for information on their current state and state since probed last.

Return Packet Format: xxSS-SSSS-SSSS-SSSS-xxCC-CCCC-CCCC-CCCC
S 

Current sensor state. 1 means active.
C 
Change value. 1 if the sensor has activated since the last time is was probed.

Because of the nature of the packet, the CCR simulator will only return the states of sensors with AIU values of 0 through 13. Bit 3 represents sensor 13, 4 represents 12, and so on down to 0. The state and change values are in the same order.
So, in hexadecimal, these bits represent the following sensors:


xxdc-ba98-7654-3210-xxdc-ba98-7654-3210
Train Operating System
The Train Operating System is a Senior Capstone Experience project written in 2007 by Chris Kratz. Using Windows named pipes, the CCR Simulator is able to receive commands from the Train OS and manipulate the corresponding trains and turnouts.

I have modified the original source code to connect to the CCR Simulator. Here are step-by-step instructions for setting up and running the Train OS (these steps are also available on the project website): 
1. Download and unzip the Train Operating System from the project website.

· Compile the following projects using a Visual C++ compiler.

· DCCManager\DccMan.dsw
· MESSAGING SERVER\test.dsw (see step 3)
· ResourceManager\ResourceMan.dsw
· TrackManager\TrackMan.dsw
· TrianManager\TrainMan.dsw
2. UI\TOS User Interface\hellowindow.dsw
· Enable MFC in the Messaging Server project before compiling it. Instructions for enabling MFC in Visual C++ 6:

· Go to Project>Settings...
· Set the "Settings For" dropdown to "All Configurations"
· Click the "General" tab if it isn't already open.
3. Set the Microsoft Foundation Classes setting to "Use MFC in a Shared DLL".
4. Run all six programs simultaneously.
1. Do the following to make the Train OS communicate with the CCR Simulator:
2. Start the CCR Simulator.
3. Load a track and start a simulation.
4. Click Communications>Create named pipe.
5. Click Communications>Wait for connections.
6. In the Train OS, click System Tests>"DCCMan - Init DCC".
7. Click System Tests->"DCCMan - Test #48" or System Tests>"DCCMan - DCC CAB" to change a train's speed and direction.
8. Click System Tests->"DCCMan - Set Turnout" to change simulator turnouts.

Chapter 4 – Known Issues

Simulator
· The "Export Log" menu option is unimplemented, so the menu option is disabled.

· There is no XML validation on loading.

· The Add Train dialog box has little to no validation.

Trains
· If a train is added to the track so that the front end is in one section and the rear is in another, the rear will instead be placed at a negative position on the front end's segment.

· In the collision detection routine, if a train starts in one segment, ends in another segment, and spans at least one entire segment in between, the train will not collide with anything there. Additionally, the train will only be able to collide with other trains going through the segment before the front of the train (or rear if moving in reverse).

Track

· Bends currently have a bend order and a position. The bend order is redundant, but cannot be removed because it is currently in use.

· Segment "Pin" values are not used.

· Sensors cannot currently be attached to junctions.

Communication
· The "Disconnect Named Pipe" function isn't working, and tends to freeze the program instead of actually doing anything.
· "\\.\pipe\MyPipe" is a terrible name for a pipe.
15

