Computer Controlled Railroad Simulator

CSCI 460-Senior Capstone Project Spring 2012 Kayla Pope

Definition and Requirements

- Design a track definition protocol
 - > Users define their own track layouts.
- Develop a graphical interface
 - > Current status of CCR
- The simulator supports multiple trains.
- Simulate error conditions

Definition and Requirements

- Modify the 2010 CCR Train Operating System
 - > Real mode or Simulator mode
- Support the protocol for decoders (stationary and mobile) and Auxiliary Input Units (AIU) as specified by the National Model Railroad Association (NMRA).
- Develop API functions that match the protocol for the existing CCR functions.

Solution

- Two major parts
 - > Track designer
 - > Simulator

Diagram of data structures

- > trackStructure/trackPt
- > Turnouts/sensors
- > Train

Demonstration

- Add two trains
- Run the simulator
- Increase/decrease speed
- Change turnouts

myTrains[0]	Point loc IntX IntY Int speed Int ctr	int direction char state int firstcar string color	
myTrains[4]			

Exceptions

• Changing the state of a turnout—in certain circumstances

Other Exceptions

- Not compatible with actual train
- Moving algorithm—train gets "stuck"
- Train with multiple cars (circular queue)
- Cancelling when in edit mode

Methodology

- 1. Several meetings
- 2. Design one small piece i. Keep in mind the overall goal
- 3. Implement small piece to prove conceptual understanding
- 4. Modify as necessary
 - Make sure any modifications allow for success of overall goal
- 5. Repeat steps 2-4

Learning and Development Process

Strategies

- Understand the goal
- Create data structures that can accomplish the goal
- Draw pictures
- Implement (small parts at a time)
- Modify as necessary

- Discuss with ANYONE who will listen
 - Helps to get another perspective
 - EVEN non-CS
 people
- Advice from classmates

Knowledge

• Event Programming

- > C# language
- > Event Handlers
- > Inter-Form communication
- > Graphics
- Programming Languages
 - > Parameter Passing
- Machine Language
 - Racing conditions

- Data Structures
 - Classes
 - Public/private methods
 - Accessors/Modifiers
 - Queues
- Operating Systems
 - > Threading
 - Scheduling
- Others
 - > Read/Write Files

Extensions

- Plug in to actual train
- Improve algorithm to move train
- User interface
 - > Get rid of so many Message Boxes!
- Restrict aspects—do not rely on user to create plausible track
- More efficient code
 - Custom events rather than methods between forms

Advice

• FIND MOTIVATION AND RUN WITH IT... EARLY

- > Progress helped me find motivation
- Take walk-throughs seriously
 - > Be proactive
 - > Know what you want to get out of it
- Know the goal
- Know your data structures
- Leave time to test and modify

