
1

Multi-User Computer

Controlled Railroad

Documentation & Manuals

Samuel Joski

CSCI-460 Senior Capstone Experience

22 Jan. – 10 May 2018

2

Table of Contents:

Introduction

Definition - 3

Overview - 4

Diagrams

Railroad Layout - 6

Overview Layout - 9

Data Flow - 10

File Structures - 11

Instructions

Setup - 12

Start-up - 12

How-to’s - 13

Exceptions - 15

Source Code

CCR Server - 16

Master CAB - 18

3

Introduction

Definition:

Communicating with multiple robots that share common resources is rather common.

Your Amazon order might trigger controls on a robot in the warehouse. It is instructed to ride

rails to locate items on shelves and bring them to the shipping department. More complex is

dealing with multiple robots filling orders for several customers while trying to share rails and

avoid collisions.

Design a multiple user operating system for the Computer Controlled Railroad that allows

multiple trains to operate in real time on a shared track layout controlled remotely by several

users.

General Requirements:

1. Each user becomes a CAB that controls one train at a time.

2. Decide on a CAB platform.

3. Each CAB shows the state of the layout system.

4. Develop an API that communicates with the Digital Command Control (DCC) system.

5. Use operating system concepts to deal with racing conditions, resource allocation,

scheduling, etc.

6. Deal with starvation and deadlock issues.

7. Identify error conditions and attempt to solve them.

8. See Dr. Pankratz for CCR inputs and outputs.

4

Overview:

 This project utilizes the DCC-style model railroad of the SNC Computer Science

department. There are five major components of the project:

 The Railroad: the railroad itself is a piece of hardware with motors and sensors with which

a programmer of the project must interact. The railroad is interfaced via the Digital

Command Control boxes. One controls sensor reading, and the other relays commands

from the PC into which the COM port is connected.

 Resource files: the resource files hold the information about the track layout, sensor

locations, and turnout and train states. They act as the only input to the Server

Application.

 Server Application: the server application is responsible for reading input from resource

files, interpreting them, and if necessary send instructions via the DCC boxes to the

railroad. The server application is broken into components:

o COM Select: the COM Select reads the PC’s USB ports to identify the one into

which the DCC COM is connected. It sends the selection to the CCR Server

component.

o CCR Server: the CCR Server is the “View” in a Model-View-Controller concept of

the server application. It does some work by reading files and calling other

controls, but it does not (in most cases) directly contact the Railroad via the COM

Port. During file reads, railroad resources’ methods are called to execute the

logical components of the server application.

5

o Railroad Resources: the railroad resources are the classes that contain the data

and methods to manage the railroad. It determines if trains can move, if turnouts

can switch, etc. The railroad resource methods are the ones that call the

Command DCC functions to physically make changes to the railroad.

o Command DCC: the Command DCC component is in charge of directly sending

information to the DCC box via the COM port. It also has methods to read

information from the track sensors, which are set on a timer in the CCR Server

component

 Master CAB: the Master CAB sits alongside the Server Application in a directory. It

therefore has visibility of the resource files that act as the Server Application’s input. The

Master CAB is responsible for refreshing its data to match the resource files, as any

differences between the Master CAB’s data and the files signals an action that was unable

to be requested.

 User CAB: the User CAB brings in the “multi-user” aspect of the project. The design that

was implemented was a WAMP server that other PCs could connect to. HTML & PHP

display a controller to the user on a selected train, and send information to the directory

on the PC in which the Server Application is running. It would act via the WAMP

connection to the Server Application just as the Master CAB does: via the resource files.

However, this section is INCOMPLETE, and does not function. It needs to be further

developed to communicate via WAMP with the resource files.

6

Diagrams

 R
ai

lr
o

ad
 L

ay
o

u
t:

 S
en

so
rs

(N
o

ti
ce

 t
h

e
la

ck
 o

f
se

n
so

rs
 1

, 1
2

, a
n

d
 2

5
. T

h
es

e
 s

en
so

rs
 a

re
 o

n
 t

h
e

ra
ilr

o
ad

, b
u

t
u

n
u

se
d

 h
er

e.
)

7

R
ai

lr
o

ad
 L

ay
o

u
t:

 S
ec

ti
o

n
s

8

 Th
e

ad
d

re
ss

es
 o

f
th

e
tu

rn
o

u
ts

 a
re

:
0

2

4

3

8

1

3

6

4

1

4
2

1

6

5

4

R
ai

lr
o

ad
 L

ay
o

u
t:

 T
u

rn
o

u
ts

9

O
ve

rv
ie

w
 D

ia
gr

am

10

 D
at

a
Fl

o
w

11

File Structures

All file structures are set up as comma delimited. Each line represents an element of the structure

(i.e. one train, one track, one turnout, one AIU).

Trains (trains.txt)

ID, Address, Speed, Direction, Orientation, Status, Headlight, Horn, Occupied

Tracks (tracks.txt)

ID, Left top, Left bottom, Right top, Right bottom, Speed limit, Turnout ID, Left sensor,

Right sensor

Turnouts (turnouts.txt)

ID, Address, Direction, Occupied

AIUs (aius.txt)

ID, Address, [Sensor ID]

The Sensor IDs of an AIU may be 0, 1, or many – each separated by a comma.

12

Instructions

Setup

Begin by ensuring that the railroad is assembled correctly. Once the railroad is assembled,

plug in the DCC boxes to the correct jacks. The thicker cable plugs into the DCC command box,

while the grey CAT-3 cable plugs into the AIU box. Make sure that the boxes are correctly

connected and that the COM cable is attached. Plug in the power cable to a power-outlet, and

plug in the COM cable to the PC that will run the Server Application. Turn on both DCC boxes.

Start-up

Once the COM cable is attached and the DCC boxes are powered on, download the zipped

folders “CCRServer” and “MasterCAB”. Extract the folders. Once both are extracted, copy the

executable “MasterCAB.exe” into the “CCRServer” folder.

Once the CAB is copied, the files in the directory should include:

o CCRServer Visual Studio Project Folder

o CCRServer.exe

o MasterCAB.exe

o Resource files "train.txt", "turnouts.txt", "aius.txt", and "tracks.txt"

o Text file “about.txt”

Run “CCRServer.exe” to bring up the COM Select window. A COM port should be listed in

the selection. Click the port, and “Select Port”. The window should close and the CCR Server

window should appear.

13

How-to’s

Add a train

 To add a train, go to Edit Add Train. A window should appear prompting for

information. Enter the train’s address (found on top of the locomotive), its orientation (facing

left or right, bottom being the table side into which the cables plug), and its location (see

Diagrams – Railroad Layouts – Sections on page 6). Once all information has been entered, click

“Confirm”.

Remove a train

 To remove a train, go to Edit Remove Train. A window should appear prompting for

information. Enter the train’s address (found on top of the locomotive). If the train is not

occupied, it will be removed from the Server Application and associated files.

Control a train

 To control a train, run “MasterCAB.exe”. Once the window appears, any trains that were

added to the Server Application should be displayed. To control one, click the displayed train

address, and then click “Select”. If the train was not already occupied, its information will be

displayed.

 Once the train is occupied, simply click the “Up” button to increase its speed forward, or

the “Down” button to increase its speed backward. Click the “Stop” button to bring the train to

a halt.

14

Toggle turnouts

 With the Master CAB application running, click on a turnout button. If a train is not

occupying an associated section of the turnout, the turnout will be flipped on the railroad, and

the button will display its current state.

Power down

 To power down the CCR, in the Server Application, go to File Exit. Any moving trains

will be brought to a halt, all trains will be deallocated from the server, and all associated files

updated to signal to any CABs that no trains are available.

 File Disconnect can be used in a similar fashion to instead disconnect from the railroad

(stopping all trains, deallocating them and updating files) and bring the window back to the COM

Select window.

15

Exceptions

 Occasionally, powering down will throw an exception. This occurs because threads still

running attempt to access the DCC port after it has been closed.

 If the Master CAB application is closed, any trains that were occupied remain occupied,

and the train will not be halted. The train will however stop if and when the Server

determines it is no longer safe for the train to continue, as the train will continue to exist

in the Server Application list of trains. The train cannot be removed unless the Server

Application is restarted, as the train will be occupied and therefore unable to be removed.

 It is not uncommon for a sensor to miss the magnet attached to the locomotive. This will

cause the Server Application to lose sight of the train. When the train hits its next sensor,

it will not update the train location, as the Server Application is still expecting it to trip the

one that it missed.

 Derailments are also not uncommon. This is due to the physical construction of the

railroad.

 The User CAB web controller is NOT functional. Scripts need to be written to communicate

to the web server (WAMP) to read and write from files.

16

Source Code

The full source code for the project is zipped and can be found at:

compsci02.snc.edu/cs460/2018/josksa/documents.html

CCR Server:

Points of interests:

 private void readFilesEvent(object source, ElapsedEventArgs e)

This function is the ElapsedEventHandler of a timer called fileReader. This event

occurs in the background, and reads the states of the turnouts and trains from their

Resource Files. Any changes detected are send to RailroadResources.cs to update data

structures and make calls to the railroad via CommandDCC.cs if necessary.

 private void pollAIUEvent(object source, ElapsedEventArgs e)

This function is the ElapsedEventHandler of a timer called pollAIUEvent. This event

occurs in the background, and calls the method: public Train[] PollAIU(AIU aiu, Train[]

trains) in the class CommandDCC.cs. This will detect if any trains have reached their next

destination, kicking off the process of determining a train’s next location. Any changes

that result area written back to the Resource Files via CCRServer.cs method private bool

writeTrain(Train train).

17

 public bool setSpeed(int speed)

This method of the Train class in RailroadResource.cs is called from the readTrains

function of CCRServer.cs. It determines if the direction of the train needs to switch, and

calls the DCC railroad via CommandDCC to physically change the train speed.

 public bool Move()

This method of the Train class in RailroadResources.cs is called from

EvaluateDCCPoll method of the AIU class. It is a lengthy method which determines if a

train can move, where its next section may be, etc. It also calls functions of various classes

to request and release resources that are appropriate to the train moving.

 public Track getNextSection(int direction)

This method of the Track class in the RailroadResources.cs is called from the Move

method of the Train class. It determines through the connection array of a Track section

and based on the sent direction parameter what track is connected to the current track.

It will evaluate any turnout that may be associated with the track, and will catch any dead-

ends by spotting null connections.

 public Train[] EvaluateDCCPoll(int[] sensorValues, Train[] trains)

This method of the AIU class in the RailroadResources.cs is called from the PollAIU

method of CommandDCC.cs. It checks all sensors associated with the AIU for any values

that may have changed during the reading from the railroad done by the COM port.

18

Master CAB:

Points of interests:

 private void readFilesEvent(object source, ElapsedEventArgs e)

This function is the ElapsedEventHandler of a timer called fileRead. This event

occurs in the background, and reads the states of the turnouts and trains from their

Resource Files. Any changes detected are send to RailroadResources.cs to update data

structures. This indicated that an action requested was denied by the server, and previous

data was written back to the Resource File by the Server Application.

 RailroadResources.cs

This version of the RailRoadResources classes is drastically different from the one

on the Server Application. It acts here as a collection of data, with simple methods to

manipulate and retrieve the data.

