
Choreographing Events Programmers Guide

05/07/2019

Maggie Krummel

2

1 Project Overview

1.1 Definition………. pg. 3

1.2 Approach………. pg. 3

1.3 Solution Connectivity Diagram………. pg. 3

2 Software Installation/Setup

2.1 Visual Studio 2017………. pg. 3

2.2 SQL Server Express………. pg. 4

2.3 Arduino Uno………. pg. 5

2.4 Arduino IDE………. pg. 5

3 Data Storage

3.1 SQL Server Express - Song Table Definition………. pg. 6

3.2 Local FS - Events Storage………. pg. 6

4 Visual Studio Application

4.1 Application User Interfaces………. pg. 7

4.2 Startup Flow………. pg. 7

4.3 Application User Interfaces Navigation Data Flow………. pg. 8

4.4 Search Songs View (SongsSearchView.xaml) ………. pg. 9

4.5 Add/Edit Song View (AddEditSongView.xaml) ………. pg. 10

4.6 Events View………. pg. 11

5 How Events Fire

5.1 Arduino IDE/Uno Relationship………. pg. 11

5.2 Event Execution………. pg. 11

6 Exceptions

6.1 View Queue………. pg. 12

6.2 A Seconds or So Delay in Lights Execution………. pg. 12

7 Helpful Hints

7.1 Memory………. pg. 12

8 Royalty Free Audio and Icons

8.1 Music………. pg. 12

8.2 Icons………. pg. 12

3

1. Project Overview

1.1 Definition

This application allows a user to synchronize LED events with the playing of an audio file.

1.2 Approach

This application uses a WPF app in C# in Visual Studio for the user interface. MySQL express for the database as well as

local fs for the storage of larger files such as the audio, images, and event configuration.

For the LED light configuration, the Arduino language is used and is hosted by an Arduino Uno.

1.3 Solution Connectivity Diagram

2 Software Installation/Setup

2.1 Visual Studio 2017

Download Visual Studio 2017 from https://visualstudio.microsoft.com/vs/ and the folder labeled User Application from

http://compsci02.snc.edu/cs460/2019/krummm/project-resources.html.

Unzip the folder then open the solution in Visual Studio. You must set up the database before you can successfully run the

application.

HOSTS ARDUINO CODE

Upload Code

LEDs LIGHTS

HOSTS

SONG
DATA

LED LIGHTS
CONFIGURATION USER

SONG EVENT
DATA

SON

Sends Data via

Serial Ports

User Interface

https://visualstudio.microsoft.com/vs/
http://compsci02.snc.edu/cs460/2019/krummm/project-resources.html

4

2.2 SQL Server Express

Download SQL Server Express edition from https://www.microsoft.com/en-us/sql-server/sql-server-editions-express.

After you install and run SQL Server Express on your machine and establish a connection. In Visual Studio open the Server

Explorer and add the sqlexpress connection to it and choose a database name.

If you choose a name different then SongOrganzier.dbo then you must go into CapstoneEventMusicEditor.DataAccess

/App.Config and change the connectionstring on line 8 where it reads database=SongOrganzier.

Next you open the package manager in Visual Studio and run type in Update-Database making sure the Default project is set to

CapstoneEventMusicEditor.DataAccess.

Once all of these steps are complete you should be able to run the application. There will be no songs in the database as sharing

music is frowned upon. To download free songs please go to https://www.bensound.com/royalty-free-music/2 or you are more

than welcome to use songs you already have on your computer.

***In case of failure table definition is located on http://compsci02.snc.edu/cs460/2019/krummm/project-resources.html. Simply

right click on the tables folder in the Server Explorer under your database and click Add New Table. Then put in the table

definition and click the Update button.

https://www.microsoft.com/en-us/sql-server/sql-server-editions-express
https://www.bensound.com/royalty-free-music/2
http://compsci02.snc.edu/cs460/2019/krummm/project-resources.html

5

2.3 Arduino Uno

2.4 Arduino IDE

2.4.1 Setup

Download the Arduino IDE from https://www.arduino.cc/en/Main/Software and the project folder labeled Arduino Code from

http://compsci02.snc.edu/cs460/2019/krummm/project-resources.html.

After the downloads are complete unzip the Arduino code folder and the open the project in the Arduino IDE.

2.4.2 Uploading the Code

Once the project is uploaded you can simply plug in the Arduino Uno and compile and upload your code to it. If you are not

using com4 you must go into the C# application under CapstoneEventMusicEditor.UI/EventEditor/EventPlayer.cs and change

the static variable named mySerialPort to equal your new serial port.

https://www.arduino.cc/en/Main/Software
http://compsci02.snc.edu/cs460/2019/krummm/project-resources.html

6

3 Data Storage

3.1 SQL Server Express - Song Table Definition

dbo.Song

Name Data Type Allow

Nulls

Description Value Set By

Id Int Not Null Primary key, unique identifier Code

SongName Nvarchar Not Null Name of Song User Input

Album Nvarchar nullable Name of Album User Input

Artist Nvarchar Nullable Name of Artist User Input

Image Nvarchar Nullable File path to image on local fs User Input

PathToSong Nvarchar Not Null File path to song on local fs User Input

SongLength Int Not Null Song length Code

FilePathToEvent Nvarchar Nullable File path to event configuration on local fs Code

DoesEventExist Bit Not Null Has the user created an event configuration file for

the song

Code

EventSeconds Int Not Null How frequently events occur during the song.

Eventually this could be configurable by user input

on a per song basis

Code

3.2 Local FS - Events Storage

Mini Example:

<?xml version="1.0" encoding="utf-8"?>

<ArrayOfEventConfig xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <EventConfig>

 <FcnNumber>1</FcnNumber>

 <Color>0</Color>

 </EventConfig>

 <EventConfig>

 <FcnNumber>2</FcnNumber>

 <Color>2</Color>

 </EventConfig>

</ArrayOfEventConfig>

This is an array of the EventConfig struct. You can find this in CapstoneEventMusicEditor.UI/EventEditor/EventPlayer.cs. It

stores what events are played when during a song. In this version of the event storage the user can only decide what lighting

function they wish to call (FcnNumber) and what color they wish that to display in (Color). This is easily expandable though

if you wish to add a configuration setting such as speed.

7

4 Visual Studio Application

4.1 Application User Interfaces

4.2 Startup Flow

8

4.3 Application User Interfaces Navigation Data Flow

9

4.4 Search Songs View (SongsSearchView.xaml)

4.4.1 Purpose

This user interface is the startup screen. Here users can toggle between a full-size view of the song that is currently playing or a

smaller view which allows them to also view all song they have in their library.

4.4.2 User Interface Walk Through

10

4.5 Add/Edit Song View (AddEditSongView.xaml)

4.5.1 Purpose

This user interface allows the user to upload a new song from their own song collection or edit details about songs they currently

have in their library.

4.5.2 User Interface Walk Through

11

4.6 Events View

4.6.1 Purpose

This user interface allows the user to set events for a specific song. Currently the configuration is set for every 3 seconds meaning

that the user can pick a lighting function to run for any 3 second interval during the song.

4.6.2 User Interface Walk Through

5 How Events Fire

5.1 Arduino IDE/Uno Relationship

The code is compiled on the Arduino ide and then uploaded to the Arduino Uno. The Arduino Uno runs the program. The IDE is

no longer necessary once the program is uploaded.

5.2 Event Execution

First the C# app checks if an existing configuration is set for the song in the file directory. If yes, then it will use that otherwise it

will fire random events. The C# application writes out to Arduino every time an event is fired (sends an interrupt). This places the

bytes into the outgoing buffer, and the buffer is then emptied asynchronously in the background by the TX-ready interrupt on the

Arduino. Once received Arduino parses it and executes the Function calls.

12

6 Exceptions

6.1 View Queue

Did not get around to implementing a view for the queue. The implementation could simply be a toggle between all songs and view

queue, with the same population technique.

6.2 A Seconds or So Delay in Lights Execution

There is a little less than a second delay each time a new light function is called. I haven’t found a way to solve this except for

using a different board, but a way to lessen the impact would be to send in less commands rather just tell the functions how many

times to execute before a new function is called.

Ex: If you are using the strobe for a 21 second duration send in strobe and then 7 because 7 events occur in 21 seconds. That way

the function can just keep looping without having to process anything.

7 Helpful Hints

7.1 Memory

Make sure you properly dispose of both the reader and the WaveOut every time you start a new song otherwise you will run out

of memory.

8 Royalty Free Audio and Icons

8.1 Music

https://www.bensound.com/royalty-free-music/2

8.2 Icons

https://icons8.com/

https://www.bensound.com/royalty-free-music/2
https://icons8.com/

