

Visualizing Convex Hulls

Michael Schirger

Project Assignment

What I was given

Project Assignment

- Develop an app that collects GPS coordinates and then displays the convex hull of the set of locations as an overlay on a map
 - GPS coordinate collection
 - Collects and stores coordinates for a specified amount of time.
 - Continues to collect if the app is in the background.
 - Construct the Convex Hull
 - Design and implement an algorithm to construct convex hull.
 - Illustrate convex hull as an overlay on a map
 - Use different colors for different collections.
 - Show coordinates of vertices when requested.
 - Show intersection or union of N convex hulls.
 - Compute the area of a convex hull when requested.
 - Application?

Convex Hull

- Smallest convex polygon that contains all the points of the set.
- A line drawn between any two points must remain within the convex hull.

Part 1 GPS Coordinate Collection

Coordinate Collection

- The user is given four options for coordinate collection
 - Automatic Start
 - Set a start and end time and the app will capture coordinates within that time period.
 - This is the most useful method.
 - Manual Start
 - Start it by pressing a button and have it record for a specified amount of time.
 - Full Manual
 - Start it by pressing a button and have it record until the end button is pressed.
 - Single coordinate captured
 - Will capture a single coordinate and place it into chosen file.

Coordinate Collection

Coordinate Collection

- Android documentation recommends the use of FusedLocationProviderClient
 - This simply retrieves the latest location in the location cache.
 - Will not work for background location capture.
- For background capture it is necessary to use LocationServices
 - Make a call to LocationServices API.
 - Explicitly requests current location of device.
 - LocationServices uses a callback function
 - Returns latitude and longitude of device to the callback function.
- Once the location has been retrieved, the latitude and longitude are written to a data file.

Part 2

Construct the Convex Hull

Data Interpretation

- In terms of standard Cartesian coordinate system
 - Longitude is the x value.
 - Latitude is the y value.
 - (x,y) becomes (longitude, latitude).
- So GPS coordinates can be interpreted as Cartesian coordinates.
- This is important for the construction of convex hulls.

- Andrew's Monotone Chain Convex Hull Algorithm
 - Takes in a sorted arraylist of coordinates
 - Sorted based on the x (longitude) value
 - Iterates through the arraylist twice and determines the vertices using
 [(q.x r.x) * (p.y r.y)] ≥ [(q.y r.y) * (p.x r.x)]
 for points q, p, and r.
 - Constructs the convex hull in two phases
 - Upper Convex Hull
 - Lower Convex Hull

• If there are points

The algorithm will begin by sorting the points in an arraylist:

$$(-7,1) \longrightarrow (-6,-8) \longrightarrow (-4,-5) \longrightarrow (-4,8) \longrightarrow (-3,3) \longrightarrow (0,0) \longrightarrow (3,7) \longrightarrow (5,-4) \longrightarrow (6,-4) \longrightarrow (8,4)$$

Coordinates:

 $(-7,1) \longrightarrow (-6,-8) \longrightarrow (-4,-5) \longrightarrow (-4,8) \longrightarrow (-3,3) \longrightarrow (0,0) \longrightarrow (3,7) \longrightarrow (5,-4) \longrightarrow (6,-4) \longrightarrow (8,4)$

Vertices:

Check:

Coordinates:

 $(-7,1) \longrightarrow (-6,-8) \longrightarrow (-4,-5) \longrightarrow (-4,8) \longrightarrow (-3,3) \longrightarrow (0,0) \longrightarrow (3,7) \longrightarrow (5,-4) \longrightarrow (6,-4) \longrightarrow (8,4)$

Vertices:

(-7,1)

Check:

Coordinates: $(-7,1) \rightarrow (-6,-8) \rightarrow (-4,-5) \rightarrow (-4,8) \rightarrow (-3,3) \rightarrow (0,0) \rightarrow (3,7) \rightarrow (5,-4) \rightarrow (6,-4) \rightarrow (8,4)$

Vertices: (-7,1) → (-6,-8)

Check: p: (-4,-5) q:(-6,-8) r:(-7,1) -6 > -27

Coordinates: $(-7,1) \rightarrow (-6,-8) \rightarrow (-4,-5) \rightarrow (-4,8) \rightarrow (-3,3) \rightarrow (0,0) \rightarrow (3,7) \rightarrow (5,-4) \rightarrow (6,-4) \rightarrow (8,4)$

Vertices: (-7,1) → (-4,-5)

Check: p: (-4,8) q:(-4,-5) r:(-7,1) 21 > -18

Coordinates: $(-7,1) \rightarrow (-6,-8) \rightarrow (-4,-5) \rightarrow (-4,8) \rightarrow (-3,3) \rightarrow (0,0) \rightarrow (3,7) \rightarrow (5,-4) \rightarrow (6,-4) \rightarrow (8,4)$

Vertices: (-7,1) → (-4,8)

Check: p: (-3,3) q:(-4,8) r:(-7,1) 6 < 28

Coordinates: (-7,1) \rightarrow (-6,-8) \rightarrow (-4,-5) \rightarrow (-4,8) \rightarrow (-3,3) \rightarrow (0,0) \rightarrow (3,7) \rightarrow (5,-4) \rightarrow (6,-4) \rightarrow (8,4)

Vertices: (-7,1) → (-4,8) → (-3,3)

Check: p: (0,0) q:(-3,3) r:(-4,8) -8 > -20

Coordinates: $(-7,1) \rightarrow (-6,-8) \rightarrow (-4,-5) \rightarrow (-4,8) \rightarrow (-3,3) \rightarrow (0,0) \rightarrow (3,7) \rightarrow (5,-4) \rightarrow (6,-4) \rightarrow (8,4)$

Vertices: (-7,1) → (-4,8)

Check: p: (0,0) q:(-4,8) r:(-7,1) -3 < 49

Coordinates: $(-7,1) \rightarrow (-6,-8) \rightarrow (-4,-5) \rightarrow (-4,8) \rightarrow (-3,3) \rightarrow (0,0) \rightarrow (3,7) \rightarrow (5,-4) \rightarrow (6,-4) \rightarrow (8,4)$

Vertices: (-7,1) → (-4,8) → (0,0)

Check: p: (3,7) q:(0,0) r:(-4,8) -4 > -56

Coordinates: $(-7,1) \rightarrow (-6,-8) \rightarrow (-4,-5) \rightarrow (-4,8) \rightarrow (-3,3) \rightarrow (0,0) \rightarrow (3,7) \rightarrow (5,-4) \rightarrow (6,-4) \rightarrow (8,4)$

Vertices: (-7,1) → (-4,8)

Check: p: (3,7) q:(-4,8) r:(-7,1) 0 < 70

Coordinates: $(-7,1) \rightarrow (-6,-8) \rightarrow (-4,-5) \rightarrow (-4,8) \rightarrow (-3,3) \rightarrow (0,0) \rightarrow (3,7) \rightarrow (5,-4) \rightarrow (6,-4) \rightarrow (8,4)$

Vertices: (-7,1) → (-4,8) → (3,7)

Check: p: (5,-4) q:(3,7) r:(-4,8) -84 < -9

Coordinates: (-7,1) \rightarrow (-6,-8) \rightarrow (-4,-5) \rightarrow (-4,8) \rightarrow (-3,3) \rightarrow (0,0) \rightarrow (3,7) \rightarrow (5,-4) \rightarrow (8,4)

Vertices: $(-7,1) \rightarrow (-4,8) \rightarrow (3,7) \rightarrow (5,-4)$

Check: p: (6,-4) q:(5,-4) r:(3,7) -22 > -33

Coordinates: $(-7,1) \rightarrow (-6,-8) \rightarrow (-4,-5) \rightarrow (-4,8) \rightarrow (-3,3) \rightarrow (0,0) \rightarrow (3,7) \rightarrow (5,-4) \rightarrow (6,-4) \rightarrow (8,4)$

Vertices: (-7,1) → (-4,8) → (3,7)

Check: p: (6,-4) q:(3,7) r:(-4,8) -120 < -10

Coordinates: (-7,1) \rightarrow (-6,-8) \rightarrow (-4,-5) \rightarrow (-4,8) \rightarrow (-3,3) \rightarrow (0,0) \rightarrow (3,7) \rightarrow (5,-4) \rightarrow (8,4)

Vertices: $(-7,1) \rightarrow (-4,8) \rightarrow (3,7) \rightarrow (6,-4)$

Check: p: (8,4) q:(6,-4) r:(3,7) -9 > -55

Coordinates: $(-7,1) \rightarrow (-6,-8) \rightarrow (-4,-5) \rightarrow (-4,8) \rightarrow (-3,3) \rightarrow (0,0) \rightarrow (3,7) \rightarrow (5,-4) \rightarrow (6,-4) \rightarrow (8,4)$

Vertices: (-7,1) → (-4,8) → (3,7)

Check: p: (8,4) q:(3,7) r:(-4,8) -28 < -12

Coordinates: (-7,1) \rightarrow (-6,-8) \rightarrow (-4,-5) \rightarrow (-4,8) \rightarrow (0,0) \rightarrow (3,7) \rightarrow (5,-4) \rightarrow (6,-4) \rightarrow (8,4)

Vertices: $(-7,1) \rightarrow (-4,8) \rightarrow (3,7) \rightarrow (8,4)$

Coordinates: (-7,1) + (-6,-8) + (-4,-5) + (-4,8) + (-4,8) + (-4,8) + (-6,-4) + (-6,-8) + (-6,-8) + (-6,-8) + (-6,-8)

Part 3

Display the convex hulls as a map overlay

- 3 different levels:
 - Google Maps Polygon
 - Google Maps Groundoverlay
 - Google Maps Marker
- Compute the center of convex hull.
 - Helps center the convex hull on the screen.
- Compute area of convex hull.

- A project requirement is to display the coordinate of a vertex when requested.
- The app shows coordinate of any point in the convex hull when it is tapped
 - This is the purpose of the Marker objects in the convex hull

- Displaying the area of a convex hull was another requirement.
- The app will display the area of a convex hull anytime a part of the convex hull that is not a coordinate is tapped.

- Displaying each convex hull as a different color was another project requirement.
- When multiple convex hulls are displayed, each convex hull has a different color.
- Each convex hull will have a label as well.

Intersection

Union

Demonstration

Learning and Development

Learning

Stack Overflow

• Android documentation is excellent for the most part when it comes to user interface.

Google Maps documentation.

Extension

- Record the coordinates on a phone and write them to a database
- Use Google Maps API for web to construct the convex hulls
 - Google Maps API is much better supported on the web than on Android

Thank You!

Questions?