Picture to Paint By Number

Marie Smith

Project Definition and Requirements

Project Description

Design and implement an application that creates a paint-by-number image for a user-chosen image.

Requirements

- 1. Open an existing image into your application.
- 2. Save the image you create to file for later viewing/ printing.
- 3. Specify the number of colors to use in the painting.
- 4. Choose the colors to be used in the painting.
- 5. Choose specific colors present in the image to be used in the painting.
- 6. Produce the image as if painted using the given palette and outlines.
- 7. Produce the image containing only the outlines with the number of the paint to use in each region.
- 8. Offer a "complexity" option that allows both experienced and beginner artists to enjoy Paint-by-number.

Solutions to Requirements

Open an existing image

HTML File Upload

Save the image

Right click on the canvas

Specify the number of colors/ Complexity

Set levels (easy, medium and hard) that limit the number of colors that can be chosen by the user

Easy Medium Hard
Choose File No file chosen
Submit Photo

Easy Medium Hard	
Choose File No file chosen	
Submit Photo	

Choose the colors to be used in the painting/ choose specific colors present in the image

Javascript eyedropper tool

Problems: Only compatible with some browsers, User can choose a color anywhere on the screen

Produce the image as if painted

KMeans clustering method

Problem: this was originally a very slow process. To speed it up, I adjusted my code to look at every third pixel, and setting the color of the pixels on either side to match the color in the center pixel.

Palette:

Image Divided into Pixels

KMeans Continued

Palette:

1	3	2
1	3	2
3	1	2

	24 Q	
1	3	2
1	3	2
1	3	2
1	3	2
1	3	2
1	3	2
3	1	2
3	1	2
3	1	2

Palette Matrix

Produce the image containing only the outlines with the number of the paint to use in each region

Using my palette matrix, I can determine where the outlines will go based on color changes, and I can look at similar colored regions of the picture and calculate and middle point to put the label.

-Problems: The function that finds label placements runs very slowly

Outline

1	1	1
1	1	1
1	1	1
2	2	1
2	2	1
2	2	1
2	2	2
2	2	2
2	2	2

1	1	1
1	1	1
1	1	1
2	2	1
2	2	1
2	2	1
2	2	2
2	2	2
2	2	2

0	0	0
0	0	0
1	1	1
0	0	1
0	0	1
0	0	1
0	0	0
0	0	0
0	0	0

Outline Matrix

Palette Matrix

Label regions

Palette Matrix

Demonstration

Level Hard Flower Example

Learning and Development Process

Sources and Methods

- Online resources
- Professors
- Trial and error
- New versions
- Planning ahead/ following a schedule

Extensions

- Increasing the speed of calculating the label placements
- Have a "color" mode where user can click to color in regions using palette colors
- Offer a way for the user to start over
- Include a loading bar so the user knows the program is working
- Allow the user to delete/replace colors in the palette
- Allow the user to print only the photo

Calculating Distance Between Colors

Color from image

Color One

R: 249

G: 111 B: 231

Colors from palette:

Color One and Color Two:

 $(Color Two.r - Color One . r)^{2} + (Color Two.g - Color One . g)^{2} + (Color Two.b - Color One . b)^{2}$ $(94 - 249)^{2} + (212 - 111)^{2} + (242 - 231)^{2} = 34,347$

Color One and Color Three:

Color Three R: 244 G: 91 B: 137

 $(Color Three.r - Color One . r)^{2} + (Color Three.g - Color One . g)^{2} + (Color Three.b - Color One . b)^{2}$ $(244-249)^{2} + (91-111)^{2} + (137-231)^{2} = 9,261$

Image Data

Image

							I	mage	e Dat	a							
R	G	в	R	G	в	R	G	в	R	G	В	R	G	в	R	G	в
	•		N	0	0	ĸ	U	0		U		N	J			•	

1	3	2
1	3	2

 ${\sf Image with \ corresponding \ palette \ colors}$

Formula to calculate the average of colors: red: sum of red values/ number of colors blue: sum of blue values/ number of colors green: sum of green values / number of colors

r: 147	r: 180	r: 201
g: 196	g: 167	g: 218
b: 125	b: 214	b: 248
r: 147	r: 103	r: 111
g: 196	g: 78	g: 168
b: 125	b: 167	b: 220

(Example) Average of colors associated with Palette Color Two:

red: (201 + 111)/2 = 156 green: (218 + 168)/2 = 193 blue: (248 + 220)/2 = 234

New Palette: 1 2 3

PERT Chart

