
1

Cartoonify

By Claire Bulick



“Develop an application that makes cartoon-like images from 
pictures.”

2

Project Description

Drawn by Marco D’Alfonso for FOX Sports

https://www.marcodalfonso.com/nfl-on-fox/


3

Project Description

Requirements:
1.) Upload a photo and convert it to a cartoon-like image.
2.) Examine various algorithms and consider designing your own.
3.) Control the contrast, tint, and intensity of the cartoon.
4.) Allow the user to specify the number of colors in the cartoon image.
5.) Allow the user to specify which colors will be in the cartoon image.
6.) Implement save and open functions.



4

Solutions

Width: 474px
Height: 315px 

-C# Windows form application
-Pixel-by-pixel image processing
-Finding most similar colors
-Many arrays, Color objects, and 
Lists of objects



-Providing areas for 
users to add image, 
adjust settings, etc.

-The coloring 
algorithm takes 
values from these 
areas

5

Solutions



Color objects: A, R, G, B parameters, all 0-255

6

How do colors work?

RGB is not the only way this program looks at color…



-There are two ways that colors can be added to the palette:

7

Eyedropper/Color Sampler

Custom Color Picker

Colors are added to a 
List object, which then 
appears as the palette



- Makes clusters (“buckets”) based on the lowest averages
- Uses those averages on the next pass to update the clusters

8

Grouping Algorithm: K-Means

Cycle through palette 
colors and find the 
minimum average…

The palette color that the current 
pixel color is “closest” to becomes that 
pixel’s assigned bucket.

The minimum averages for each 
bucket are used for comparisons with 
the pixel colors in the next pass.

Store bucket IDs for each pixel in 
an array that mirrors image’s 
width and height. These bucket 
IDs are used to color at the end.



Euclidean Distance formula used to find most similar colors (lowest averages)

9

RGB 93, 84, 95

Go through pixel by pixel…
Compare to palette colors or 
previous minimum averages 
using this formula

Pixel placed in bucket 
of most similar color to 
it

Repeat process until maximum 
number of passes is reached, or 
none of the minimum averages 
change

r1, g1, b1: From palette or previous min. averages
r2, g2, b2: From current pixel color

Minimum averages 
stored in array to be 
used in next pass



Applying contrast settings:

10

-Contrast is the lightness or darkness of different colors compared to each other

(Repeat for pixel’s 
green and blue values)



Applying tint and intensity settings:

11

-HSV (hue saturation value) color mode

Hue: Value from 0-360. Represents the “base color”

Saturation: Value from 0.0-1.0. Affects how much of the hue 
there is

Value/Brightness: Value from 0.0-1.0. 0.0 is completely black, 
while 1.0 is completely white.

-Tint setting adjusts the brightness value of colors
-Tint is the whiteness of a color

-Intensity setting adjusts the saturation value of colors
-Intensity is the brightness or dullness of a color



Demonstration



-BMVP & DCP
-The K-Means algorithm, improving UI, making 

suggestions
-2021 graduate Colby Wall’s blog
-Microsoft Learn
-Stack Overflow

13

Development Process



A visual timeline of progress…

14



A visual timeline of progress…

15



-Threading
-Pixel Smoothing + checking for isolated pixels
-Applying the contrast setting
-After running K-Means algorithm, letting user run 
additional passes from where it left off (saving the 
averages from the last pass)
-Contrast/tint/intensity settings set using sliders
-What if cartoon ends up being only one color?

16

Exceptions



- Faster ways to process image
- Outlines
- More palette management options
- Reducing cartoon file size

17

Extensions



Questions?


