
Thank you for your interest in improving the Cartoonify project! This is the programmer’s
guide to the application. This guide pertains to the version of the program available in
the .zip folder on the website.

Setup

- Windows OS version 7.0 (minimum)
- Target framework: .NET 6.0
- No additional files needed.

Libraries

- System.Drawing namespace
- System.Drawing.Imaging namespace
- System.Drawing.Drawing2D namespace
- System.Runtime.InteropServices namespace
- ColorMine.ColorSpaces from the ColorMine package by Joe Zack (

https://www.nuget.org/packages/ColorMine/)

Files

- CSharp_Test.sln is the main solution.
- It contains the source code for three Windows Forms.

- No specifically-named files or folders are required to run the application.
- In order to use the application for its intended purpose, an image with file type

.JPG, .PNG, or .BMP is required.
- Images made by the application are saved as .BMP objects.

Form1

- The main Form of the application. Uses all of the required libraries. Contains
many member variables. The ones explained here are used in the primary
functions of the application.

- public int contrast , tint , intensity
- public List<Color> colorOptions : Stores all colors that are currently in

the user’s color palette. Starts empty, but has values added to it through
two functions called by event handlers.

- public List<Color> checkedPalette : Stores colors that are checked off
in the user’s palette. Starts empty, but has values added to it when the
KmeansRGB function runs. Used to send information to Form2.

https://www.nuget.org/packages/ColorMine/

- public List<Color> colorMorph : Made to store the contents of an array
made in the KmeansRGB function. Starts empty. Used to send information
to Form2.

- public int maxColorTransfer : Stores the number of buckets (groups)
from the most recent cartoonification. Starts empty, but has a value added
to it when the KmeansRGB function runs. Sent to Form2 to be used as a
stopping point for a for loop.

- public int pixelCount : Stores the number of pixels in the uploaded
image. Starts empty, but has a value added to it when the KmeansRGB
function runs. Sent to Form2 to calculate averages.

- public List<int> bucketCounts : Stores the number of pixels that each
bucket appears in inside the cartoon. Starts empty, but has a value added
to it when the KmeansRGB function runs. Sent to Form2 to calculate
averages.

- public Pen boxPen
- public SolidBrush boxBrush
- Random random : Initializes RNG seed for use in the Fun Mode of the

application. Used in the KmeansRGB function under certain conditions.
- The appearance of the Form when first opened:

- The following are elements of Form1’s window. The ones that are used by the

primary functions will be explained.
- selectedPicture : a PictureBox object that displays the user’s uploaded

image. Starts empty. Display mode is set to StretchImage; this is done to
prevent the image from appearing under the UI.

- cartoon : a PictureBox object that displays the resulting cartoon. Starts
empty. Display mode is set to StretchImage; this is done to prevent the
image from appearing under the UI.

- openFileButton : a Button object that opens an OpenFileDialog. The
OpenFileDialog allows the user to upload a .JPG, .PNG, or .BMP file from
anywhere on their device. This button is normally enabled, but it
temporarily disables when the program is processing an image.

- numColorsLabel : a Label object that serves to label the box where the
user can adjust the number of colors that will appear in the cartoon.

- contrastLabel
- tintLabel
- intensityLabel
- saveButton : a Button object that opens a SaveFileDialog that allows the

user to save the Image object stored in cartoon. This button starts
disabled but becomes enabled when a cartoon is created. It will also be
disabled while the program is processing an image.

- specColorsLabel
- selectColors
- cartoonify : a Button object that runs an image processing function when

clicked.
- contrastHelp
- contrastBox
- tintHelp
- tintBox
- intensityHelp
- intensityBox
- photoNameLabel
- numColorsBox : a NumericUpDown object where users can set how

many colors will appear in the cartoon. Minimum and default value is 2,
while the maximum value is 16. The value inside this box can also be
changed by certain functions within the Form. The value is also used by
the main image processing algorithm.

- colorProgBar : a ProgressBar object that gives users a visual indicator of
how far along the application is inside image processing.

- eyedropperInfoLabel
- modeLabel
- modeHelp
- modePanel : a Panel object that contains modeRadioButton and

modeRadioButton2.

- modeRadioButton2 : a RadioButton object that, when checked, enables
the “Fun Mode” of cartoonification for the user. Part of modePanel.

- modeRadioButton : a RadioButton object that, when checked, enables
the “Standard Mode” of cartoonification for the user. Part of modePanel.
This radio button starts checked by default.

- gbColorPalette : a GroupBox object that contains the user’s color palette.
It starts with no controls inside, but certain functions within the Form add
CheckBox controls to this GroupBox.

- kMeansButton : a Button object that sends data to Form2 and opens
Form2 when clicked. It starts disabled and is only enabled under certain
conditions.

- helpLink : a LinkLabel object that opens Form3 (the Help menu) when
clicked.

- progBarLabel : a Label object located underneath colorProgBar that is
intended to tell the user which stage of image processing the application is
on.

- button1 : This unlabeled button is not used by the primary functions of the
algorithm, but it is used to clear out the user’s color palette.

- The following are the functions inside Form1. The primary functions will be
explained.

- public Default constructor (no parameters)
- private void Save_Button_Click (object sender, EventArgs e)
- private void selectedPicture_DblClick (object sender, EventArgs e)
- private void openFileButton_Click (object sender, EventArgs e)
- private void cartoonify_Click (object sender, EventArgs e)
- private void selectColors_Click (object sender, EventArgs e)
- private void kMeansButton_Click (object sender, EventArgs e)
- private void paletteClearBtn_Click (object sender, EventArgs e)
- private float EuclideanRGB (Color c1, Color c2) :

- Called by KmeansRGB.
- Color c1 represents the palette color that the process is currently

on; Color c2 represents the current pixel color.
- Defines a float variable called avg, and three double variables

called RCalc, GCalc, and BCalc.

-

- The resulting RCalc, GCalc, and BCalc are then added together
(done first), and then divided by 3 to find avg. The result is typecast
as a float, so it can be assigned to avg.

- Returns avg.
- public void KmeansRGB (bool modeTag) :

- modeTag is true when cartoonify_Click finds that modeRadioButton
is Checked; false when cartoonify_Click finds that
modeRadioButton2 is Checked. (It is true if the user is running
Standard Mode and false if running Fun Mode.) This affects how
the cartoon is created near the end of this function.

- Disables the openFileButton, saveButton, and cartoonify buttons.
- Creates several objects and variables:

- Bitmap pic = new Bitmap(selectedPicture.Image)
- int maxX = pic.Width
- int maxY = pic.Height
- int[,] cBuckets = new int[maxX, maxY]

- Parallel to the image’s height and width. Each entry
represents a pixel, and it holds an int representing the
bucket that pixel was placed into.

- Used to color cartoon at the end.
- List<Color> selColors = new List<Color>()

- Grabs colors from Checked items in gbColorPalette.
- The int paletteIndex is used in the foreach loop that

adds colors to this List. The loop goes through each
Color inside gbColorPalette’s controls, and if the color
is checked, then the color in colorOptions at index
paletteIndex is added to selColors.

- Color[] selColorsArray = new Color[selColors.Count]
- Contents of selColors added to this array.

- int numClusters = (int)numColorsBox.Value
- Checks if selColors is less than 2, if selColors.Count is greater than

numClusters, or if selColors.Count is less than numClusters. If any
of these three are true, a MessageBox with the appropriate error
message appears, re-enables the three buttons that were disabled,
resets progBarLabel, and the function returns.

- Creates parallel arrays and Lists that rely on numClusters:
- List<Color>[] buckets = new List<Color>[numClusters]

- Stores the pixel colors inside each bucket.
- int[] bucketCount = new int[numClusters]

- Stores how many pixels are in each bucket.

- Color[] targetAvgs = new Color[numClusters]
- Intended to be used to check best fit in subsequent

iterations.
- Color[] prevAvgs = new Color[numClusters]

- Keeps track of the previous averages for the next
iteration of the main loop.

- When initialized, the contents of selColorsArray are
copied into it. (It starts with the palette colors stored.)

- Creates variables used for the main loop:
- float avg
- float min = float.MaxValue
- int bucketIndex = -1
- int numPasses = 0
- float avgR = 0; float avgG = 0; float avgB = 0;
- int sumR = 0; int sumG = 0; int sumB = 0;
- bool bucketChange = true
- int maxPasses = 7

- Can be set to 3 if pic’s Height or Width are above a
certain value. This is done to reduce processing time.

- colorProgBar’s Maximum is set to pic.Width * (maxPasses +
1).

- The main while loop runs; its process is described in the K-Means
Algorithm Explanation section.

- After the while loop finishes:
- Checks if modeTag is false.

- If false (user is in Fun Mode), swaps colors
associated with each bucket randomly. The
random.Next call uses 0 as the min and numClusters
as the max.

- Creates the cartoon using cBuckets and a nested for loop.
- If modeTag is true (the user is running Standard

Mode), the pixel at (x, y) is colored using the Color
stored in MinAvgs at the index indicated by the value
of cBuckets[x,y]. (Standard Mode uses the updated
averages found during the K-Means algorithm to color
the cartoon.)

- If modeTag is false (the user is running Fun Mode),
the pixel at (x, y) is colored using the Color stored in
selColorsArray at the index indicated by the value of

cBuckets[x,y]. (Fun Mode preserves the original
palette colors in the cartoon.)

- Checks if modeTag is true.
- If it is true, sets up the Form1 member variables

pixelCount, bucketCounts, colorMorph,
checkedPalette, and maxColorTransfer to send to
Form2.

- pixelCount is set using pic.Width * pic.Height.
- bucketCounts, colorMorph, and

checkedPalette are cleared out before being
set up in a for loop that runs with i <
numClusters as its condition.

- checkedPalette is set up with
selColorsArray’s contents.

- colorMorph is set up with prevAvg’s
contents.

- bucketCounts is set up with the contents
of bucketCount.

- maxColorTransfer is set equal to numClusters.
- Enables kMeansButton (“Standard Mode Color

Morph” button on the application that opens Form2).
- Resets the progress bar.
- Sets cartoon’s Image as pic. (At this point, pic has been

altered.)
- Runs applyContrast(), applyTint(), and applyIntensity() in

that order.
- Sets progBarLabel’s text to “Done!” to tell the user that the

cartoon is complete.
- private void helpLink_LinkClicked (object sender,

LinkLabelLinkClickedEventArgs e)
- public void applyContrast ()
- public void applyTint ()
- public void applyIntensity ()

K-Means Algorithm Explanation
 This function, alongside EuclideanRGB, will be available in a separate document.
 Refer to KmeansRGB’s description in the Form1 functions section for an
explanation of the variables and data structures needed.

 K-Means is a grouping algorithm that groups similar numbers together and
updates groups (buckets, clusters) based on the averages (means) of the elements of
each group. Color objects consist of multiple ints representing red, green, and blue
values, so they can be used with this algorithm.

- All inside a while loop that runs until the maximum number of passes is reached,
or if none of the averages change.

- Before the nested for loops, set bucketChange to false.
- Nested for loops; one is (int x = 0; x < pic.Width; x++) while the inner loop

is (int y = 0; y < pic.Height; y++)
- Creates pixelColor using the color of the pixel at (x, y).
- Creates Color c with a temporary value; this is used in the following

loop that compares pixel color to colors in prevAvgs (which stores
the user’s palette colors on the first pass, and the average of each
pixel in each bucket on subsequent passes), and finds the closest
bucket color to the current pixel

- for (int i = 0; i < numClusters; i++)
- avg is set equal to the result of calling EuclideanRGB with

prevAvgs[i] and pixelColor as parameters.
- avg is then compared to min

- If avg < min
- min is set equal to avg
- c is set to the Color at index i
- bucketIndex is set to i (this bucket represents

the one that the pixel is currently closest to)
- bucketChange is set to true (an average

changed)
- The pixel color is added to the bucket at bucketIndex. The amount

in the bucketCount array at bucketIndex is also incremented by 1.
bucketIndex also becomes the value in cBuckets[x, y].

- Before moving on to the next pixel, bucketIndex and min are reset.
- After going through pixel by pixel in the current pass:

- for (int i = 0; i < numClusters; i++) loop that finds the average of the
pixel colors in each bucket.

- In a foreach loop that goes through the Colors in buckets[i] ,
the sumR, sumG, and sumB are found by adding Color c’s
R, G, and B values to their respective sums.

- If the bucketCount[i] is not 0, then each of sumR, sumG, and
sumB are divided by the value of bucketCount[i]. These
values are set into the variables avgR, avgG, and avgB. If

any of the three values end up being above 255, the
respective value will be set to 255, and if any of them end up
being below 0, then the respective value is set to 0. This is to
prevent exceptions in the next step.

- A new Color object is created using avgR, avgG, and avgB.
This Color object is set into targetAvgs[i].

- Before the next iteration of this inner loop, sumR, sumG, and
sumB are reset to 0.

- The contents of targetAvgs are copied into prevAvgs using a loop.
- numPasses increments.
- If conditions are met to run the while loop again for another pass of the

algorithm, then the contents of buckets are cleared and the bucketCounts
array is zeroed out.

- The contents of these two arrays will remain if this is the last pass
of K-Means, as they are used in other areas of the application.

Form2

- This Form can be opened by clicking on the “Standard Mode Color Changes”
button on the main Form.

- It has 7 member variables, 5 of which are used to store received data from
Form1. More information is in the Data Flow section. The other two member
variables are Pen and SolidBrush objects used to draw rectangles to the screen.

- The primary function of this Form is to display the user’s checked palette colors
and their RGB values to compare them to the final averages from the K-Means
algorithm. The rectangles of those colors and their RGB values are displayed on
the right side of the Form.

- This Form also displays the percentages of how often each color bucket
appears in the user’s cartoon. These are found by dividing the number of
pixels in each bucket by the total number of pixels, then multiplying by
100. If there are 0 pixels in a bucket, then the percentage displays 0.

- The code used to draw colored rectangles to the screen is originally used
in two functions in Form1. The CheckBox objects are a holdover from this
and don’t serve any function in this Form.

- While this Form is open, Form1 can still be interacted with. This is intended as a
supplementary window for the user, so they can see how colors shifted during
the K-Means algorithm in Standard Mode.

Form3

- This Form is the Help window. It can be opened by clicking the LinkLabel object
labeled “Help” on the bottom left of Form1.

- Form3 contains 7 Label objects whose contents are initialized upon opening, as
well as one Button object that closes the Form.

- Form3 does not send or receive information from any of the other two Forms.

Data Flow

Possible Extensions

- As another form of palette control, allowing the user to remove colors from the
palette individually.

- Similar to how the ‘# Colors’ counter increments whenever a color is added via
eyedropper or color picker, this counter should increment or decrement whenever
the user checks or unchecks a color in the palette.

- The CheckBox objects that make up the color palette’s controls are
created when the color is added, so they are not defined as part of the
form. Otherwise, it could be handled with event handlers.

- Allowing the user to run additional passes of K-Means while in Standard Mode,
and also letting them set how many additional passes.

- I believe that this could be achieved with several more variables.
KmeansRGB would take an additional boolean parameter that would be
true if the image has already been cartoonified with the same settings in
Standard Mode. This boolean parameter would be a global variable, and it
would be set to false if the user adjusts settings, uploads a new image, or
switches to Fun Mode and then cartoonifies again.

- The colors shifted by the K-Means algorithm are saved in a global variable
in order to be sent to Form2, so this variable could be used for the starting
MinAvgs array if the above-mentioned boolean parameter is true.

- Adding threading so that the application does not seize up while processing
larger images. This would also allow the progress bar and status messages to
update as intended.

- This may require an update to the minimum .NET framework.
- Changing the file type that resulting cartoons are saved as.

- .BMP files may take up more file size than expected for larger images. A
change in the file type that resulting cartoons are saved as may reduce
the file size but keep the quality.

My Research Sources

- For coding:
 - Windows apps in C# :
https://www.geeksforgeeks.org/introduction-to-c-sharp-windows-forms-applications/
 - Image viewer in C# :
https://learn.microsoft.com/en-us/visualstudio/get-started/csharp/tutorial-windows-forms-
picture-viewer-controls?view=vs-2022

- Picture box & color dialog basics:
https://learn.microsoft.com/en-us/visualstudio/get-started/csharp/tutorial-windows-forms-
picture-viewer-code?view=vs-2022&tabs=csharp

- Color dialog:
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.colordialog?view=wi
ndowsdesktop-9.0

- Drawing rectangles:
https://learn.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangle?vie
w=windowsdesktop-9.0

- TextBox class:
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox?view=windo
wsdesktop-9.0

https://www.geeksforgeeks.org/introduction-to-c-sharp-windows-forms-applications/
https://learn.microsoft.com/en-us/visualstudio/get-started/csharp/tutorial-windows-forms-picture-viewer-controls?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/get-started/csharp/tutorial-windows-forms-picture-viewer-controls?view=vs-2022
https://learn.microsoft.com/en-us/visualstudio/get-started/csharp/tutorial-windows-forms-picture-viewer-code?view=vs-2022&tabs=csharp
https://learn.microsoft.com/en-us/visualstudio/get-started/csharp/tutorial-windows-forms-picture-viewer-code?view=vs-2022&tabs=csharp
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.colordialog?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.colordialog?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangle?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.drawing.graphics.drawrectangle?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.textbox?view=windowsdesktop-9.0

- NumericUpDown class:
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.numericupdown?vie
w=windowsdesktop-9.0

- Image handling:
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.imagelist?view=wind
owsdesktop-9.0

- System.Drawing namespace:
https://learn.microsoft.com/en-us/dotnet/api/system.drawing?view=windowsdesktop-9.0

- Save file dialog:
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/controls/how-to-save-files-usi
ng-the-savefiledialog-component?view=netframeworkdesktop-4.8

- System.Drawing.Drawing2D namespace:
https://learn.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d?view=windowsd
esktop-9.0

- Converting from HSV back to RGB color + ColorMine package:
https://stackoverflow.com/questions/1335426/is-there-a-built-in-c-net-system-api-for-hsv
-to-rgb

- Dynamic Lists in C#:
https://stackoverflow.com/questions/20451747/getting-a-value-from-dynamic-list

- Progress Bars:
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.progressbar?view=w
indowsdesktop-9.0

- Mouse event handler:
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventhandler
?view=windowsdesktop-9.0

- Grouping radio buttons:
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/controls/how-to-group-windo
ws-forms-radiobutton-controls-to-function-as-a-set?view=netframeworkdesktop-4.8

- GroupBox objects:
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.groupbox?view=win
dowsdesktop-9.0

- 2D arrays: https://www.w3schools.com/cs/cs_arrays_multi.php
- Making an array of Lists:

https://stackoverflow.com/questions/7464724/an-array-of-list-in-c-sharp
- Opening a second Form:

https://stackoverflow.com/questions/5718183/how-to-open-the-second-form
- Passing data to another Form:

https://www.c-sharpcorner.com/UploadFile/834980/how-to-pass-data-from-one-form-to-
other-form-in-windows-form/

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.numericupdown?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.numericupdown?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.imagelist?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.imagelist?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.drawing?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/controls/how-to-save-files-using-the-savefiledialog-component?view=netframeworkdesktop-4.8
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/controls/how-to-save-files-using-the-savefiledialog-component?view=netframeworkdesktop-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.drawing.drawing2d?view=windowsdesktop-9.0
https://stackoverflow.com/questions/1335426/is-there-a-built-in-c-net-system-api-for-hsv-to-rgb
https://stackoverflow.com/questions/1335426/is-there-a-built-in-c-net-system-api-for-hsv-to-rgb
https://stackoverflow.com/questions/20451747/getting-a-value-from-dynamic-list
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.progressbar?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.progressbar?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventhandler?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.mouseeventhandler?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/controls/how-to-group-windows-forms-radiobutton-controls-to-function-as-a-set?view=netframeworkdesktop-4.8
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/controls/how-to-group-windows-forms-radiobutton-controls-to-function-as-a-set?view=netframeworkdesktop-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.groupbox?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.groupbox?view=windowsdesktop-9.0
https://www.w3schools.com/cs/cs_arrays_multi.php
https://stackoverflow.com/questions/7464724/an-array-of-list-in-c-sharp
https://stackoverflow.com/questions/5718183/how-to-open-the-second-form
https://www.c-sharpcorner.com/UploadFile/834980/how-to-pass-data-from-one-form-to-other-form-in-windows-form/
https://www.c-sharpcorner.com/UploadFile/834980/how-to-pass-data-from-one-form-to-other-form-in-windows-form/

https://www.c-sharpcorner.com/UploadFile/009464/pass-data-from-one-form-to-o
ther-using-properties-in-C-Sharp/

- Marshal.Copy method:
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.marshal.cop
y?view=net-9.0&redirectedfrom=MSDN#overloads

- Adjusting contrast:
 - https://efundies.com/adjust-the-contrast-of-an-image-in-c/
 - https://softwarebydefault.com/2013/04/20/image-contrast/

- Sources used for elements that did not appear in final project:
- Progress bar with threads:

https://www.c-sharpcorner.com/article/code-for-progressbar-in-windows-ap
plication-using-c-sharp-net/

- Passing by reference:
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywo
rds/ref

- System.Math namespace:
https://learn.microsoft.com/en-us/dotnet/api/system.math?view=net-9.0

- Dynamic arrays:
https://www.csharp.com/article/what-are-c-sharp-dynamic-arrays/
https://www.geeksforgeeks.org/object-and-dynamic-array-in-c-sharp/

- Converting to HSV: https://www.youtube.com/watch?v=Kmlqxmn980g
https://www.rapidtables.com/convert/color/hsv-to-rgb.html

- Clipping with a polygonal region:
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/advanced/how-t
o-use-clipping-with-a-region?view=netframeworkdesktop-4.8

- Other image recoloring methods using matrices:
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/advanced/recol
oring-images?view=netframeworkdesktop-4.8

- Mouse hover events:
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.control
.mousemove?view=windowsdesktop-9.0#system-windows-forms-control-
mousemove

- CheckedListBox object:
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.checke
dlistbox?view=windowsdesktop-9.0

https://www.c-sharpcorner.com/UploadFile/009464/pass-data-from-one-form-to-other-using-properties-in-C-Sharp/
https://www.c-sharpcorner.com/UploadFile/009464/pass-data-from-one-form-to-other-using-properties-in-C-Sharp/
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.marshal.copy?view=net-9.0&redirectedfrom=MSDN#overloads
https://learn.microsoft.com/en-us/dotnet/api/system.runtime.interopservices.marshal.copy?view=net-9.0&redirectedfrom=MSDN#overloads
https://efundies.com/adjust-the-contrast-of-an-image-in-c/
https://softwarebydefault.com/2013/04/20/image-contrast/
https://www.c-sharpcorner.com/article/code-for-progressbar-in-windows-application-using-c-sharp-net/
https://www.c-sharpcorner.com/article/code-for-progressbar-in-windows-application-using-c-sharp-net/
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/ref
https://learn.microsoft.com/en-us/dotnet/csharp/language-reference/keywords/ref
https://learn.microsoft.com/en-us/dotnet/api/system.math?view=net-9.0
https://www.csharp.com/article/what-are-c-sharp-dynamic-arrays/
https://www.geeksforgeeks.org/object-and-dynamic-array-in-c-sharp/
https://www.youtube.com/watch?v=Kmlqxmn980g
https://www.rapidtables.com/convert/color/hsv-to-rgb.html
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/advanced/how-to-use-clipping-with-a-region?view=netframeworkdesktop-4.8
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/advanced/how-to-use-clipping-with-a-region?view=netframeworkdesktop-4.8
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/advanced/recoloring-images?view=netframeworkdesktop-4.8
https://learn.microsoft.com/en-us/dotnet/desktop/winforms/advanced/recoloring-images?view=netframeworkdesktop-4.8
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousemove?view=windowsdesktop-9.0#system-windows-forms-control-mousemove
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousemove?view=windowsdesktop-9.0#system-windows-forms-control-mousemove
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.control.mousemove?view=windowsdesktop-9.0#system-windows-forms-control-mousemove
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.checkedlistbox?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.checkedlistbox?view=windowsdesktop-9.0

- Drawing rectangles inside the CheckedListBox object:
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.drawm
ode?view=windowsdesktop-9.0

- Applying color to text:
https://stackoverflow.com/questions/3966503/c-sharp-apply-color-to-font

- K-Means algorithm:

- https://www.geeksforgeeks.org/k-means-clustering-introduction/
- https://visualstudiomagazine.com/articles/2013/12/01/k-means-data-cluste

ring-using-c.aspx
- https://visualstudiomagazine.com/Articles/2023/12/01/k-means-data-cluste

ring.aspx?Page=2
- https://www.codeproject.com/Articles/985824/Implementing-The-K-Means-

Clustering-Algorithm-in-C
- RGB distance between two colors:

https://dev.to/bytebodger/determining-the-rgb-distance-between-two-colors
-4n91

- The following two pages contain notes on the K-Means algorithm from Dr.
Pankratz (my primary resource while coding):

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.drawmode?view=windowsdesktop-9.0
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.drawmode?view=windowsdesktop-9.0
https://stackoverflow.com/questions/3966503/c-sharp-apply-color-to-font
https://www.geeksforgeeks.org/k-means-clustering-introduction/
https://visualstudiomagazine.com/articles/2013/12/01/k-means-data-clustering-using-c.aspx
https://visualstudiomagazine.com/articles/2013/12/01/k-means-data-clustering-using-c.aspx
https://visualstudiomagazine.com/Articles/2023/12/01/k-means-data-clustering.aspx?Page=2
https://visualstudiomagazine.com/Articles/2023/12/01/k-means-data-clustering.aspx?Page=2
https://www.codeproject.com/Articles/985824/Implementing-The-K-Means-Clustering-Algorithm-in-C
https://www.codeproject.com/Articles/985824/Implementing-The-K-Means-Clustering-Algorithm-in-C
https://dev.to/bytebodger/determining-the-rgb-distance-between-two-colors-4n91
https://dev.to/bytebodger/determining-the-rgb-distance-between-two-colors-4n91

