BeaconlO (BeaconFit) Developer Manual

Spencer Evenson
CSCI 460
2025

BeaconlO (BeaconFit) Developer Manual..........cccccoiimmmmmmmmmmmninsssnnes 1

L@ Y= V11 PSS 4
System ArChiItECIUIE...... ... 5
ArchiteCture Diagram..........ooiiiie e e e e 5
Development ENvironment SEtUP.........oooeieiiiiieeeeee e 7
iOS App Development Prerequisites........ccooveeeieeiiiiieiieeeeece e 7
Backend Development Prerequisites...........uuvueiiiiiiiii e 7
Setting Up the Development Environment..............ooooiiiiiiiiii e, 7
IOS APD SEIUP. ..o ———————— 7
BaCKENd SEIUP. .. .o 8
ProjeCt STrUCIUIE.......coo e a e e 9
IOS APD SHTUCIUNE.....eeeee e e e e e e e e e e e e e e e e eeeennnnnes 9
L7 0] SN 1 =SS 9

VIBW FlES... e e e e as 9
SUPPOIING FlES... . oo e e e e e e e eeeeeeees 10
Backend STHUCIUIE.ee e e 10
1Y T L P 10
o T (P 10
17T LY USSR 11

Key Algorithms and Program FIOW...........oooiiiiii e 11
Bluetooth Scanning and Proximity Detection.............ccccoooiiiiiiie 11
WOTKOUL LIfECYCIE. ... 13
Data Synchronization FIOW...........ccccuiiiiiiii e 14
Data FIOW Diagram.........coooiiiiiie e e e e e e e e e 16
Key Components in Detal............ooooiiii 18
BluetoothManager ... 18

o g 1= YT T USRSRRR 19
ACHVEWOIKOULS AP e e e e e e e e 19
Development GUIAEIINES. oo 19
(1@ 3B L= V7= o] o] o 0= o | S 19
Backend DevelopmMeENt...... i 20
B3 (] e TP PP PP PPPPPP 20
(1O 1S3 AN o] o T 1= 1] Vo U 20
Backend TestiNg......cooiiiiiii e 20
DEPIOYMENT. ...t a e as 21
[[@ 1S3 AN o] o J =T o] [0/ o 4 1= o | SRR 21
Backend Deployment..........ooo i 21

Extending the AppPlICatioN...........oooiiiiii e 21

AddiNg NEW FEALUIES........uuiiiie e 21
TroUDBIESNOOTING.ceiieiiiiie e 22
COMMON ISSUEBS......e ettt e e e e e e e e e e e e e e eaa e e e eannnas 22
BeaconlO File and Component Connections............ccccccviiiiiimimmminnnssecssssssssn. 22
B L=Y=Tedo] a1 (@ AN o] o =1/ | SRS 22

(070] 01 (=T 01 AVA TSN V=YY 11 S 23
(070 (SIS T=T V(o7 23
BluetoothManager.SWift...............euuiiiiiii e 23
APISEIVICE.SWITL.... oo e e e e eees 23
=T YA = £ 24
HOMEVIBW.SWITL.... ..ot eeeaas 24
StAtIONSVIBW.SWITL.... .o e 24
HISTOrYVIEW.SWITL......oveiiieeiiiiiiiee e 24
WorkoutTrackingVIeW.SWift...........oooiii i 25
L= = T VAT 25
StationDetailVIEW.SWIL..........coonii e 25
APIVIBW.SWITL.... et e e e e e e e e e e e eaaans 25
Supporting Files and MOUEIS............iiiiiiiiee e 26
BeaconData.SWifl..........coou i 26
StaAtioNData. SWIfL........coeeieiee e 26

1Y oTo LY E RS VY | 26
Detailed ConNeCtioN Map.........oooeiiiiiiiiiiiiaii e e e e e e e e e e e eeeeeannnea 27
From CoONtENIVIBWottt e e e e e eeaan 27
From HOMEVIEWe et et e e e e e e e e e e eaaeeeens 27
From StatioNSVIEWoee et 27
From HIiStOrYVIEW:t 27
From StationDetailVIEW:.........oovuniieeeee e e 27
From WorkoutTraCKiNGVIEW:...........uuuiiiiiiiiiiiieie e 27
From BluetoothManager:............oooiie e 27
(o g A o Y=Y Y (o 27
(DF=) = ol (o) A @0 [g T=Tox (] o TR 28
Component Initialization Order..........cooooii oo 28
ViewModifier and Extension CoONNECLIONS.............oeviiiiiiiiiieeeeeeee e 29
RESOUICES.eeeeee ettt e et e e e e e e e e e et e e e et e e e eaaeeeeaans 29

Overview

BeaconlO is a comprehensive fitness tracking application built with a Swift/SwiftUl frontend and
a Node.js/Express/MongoDB backend. The application uses Bluetooth Low Energy (BLE) to
detect when users are near workout stations, allowing them to track their fitness activities with
minimal manual input.

This manual provides technical details for developers working on the BeaconlO codebase,
including setup instructions, architecture overview, file descriptions, and development
guidelines.

System Architecture

BeaconlO follows a client-server architecture with these main components:

1. i0S Client Application: Swift/SwiftUl app that interacts with Bluetooth beacons and
provides the user interface

2. RESTful API Server: Node.js/Express backend that handles data operations

3. MongoDB Database: NoSQL database that stores all application data

Architecture Diagram

(] ios Client (SwiftUl)

BluetoothManager

- Bluetooth scanning

« Beacon detection

- Proximity calculation
+ Background scanning

APIService

- APl communication

+ Data synchronization
+ Local caching

- Error handling

Ul Views

- ContentView (main Ul)

» HomeView (dashboard)

+ StationsView (station list)

« WorkoutView (tracking)

- HistoryView (past workouts)

g Backend Server (Node.js/Express)

API Routes

- [beacons

- fexercises

« fusers

» fworkout-history

MongoDB Models

- Beacon.js

- Exercise.js

- Userjs

» WorkoutHistory.js

- [stations

+ [station-exercises
» factive-workouts
+ [beacons-in-use

- Station.js

- StationExercise.js
« ActiveWorkout.js
» BeaconinUse.js

\Z

@ MongoDB Atlas (Cloud Database)

Beacons

Exercises

Active Workouts

Beacons In Use

Stations

Users

Workout History

Station Exercises

)B Physical Components

Bluetooth Beacons

Physical devices placed at workout stations

Workout Stations

Physical gym equipment at locations

User's iPhone

Running the BeaconlO app

Development Environment Setup

iOS App Development Prerequisites

akrwbd-~

Xcode 14.0+: Required for iOS development

Swift 5.5+: The programming language used

iOS 15.0+ SDK: Target SDK version

CocoaPods or Swift Package Manager: For managing dependencies

Physical iOS Device: Required for testing Bluetooth functionality (simulator does not
support full BLE capabilities)

Backend Development Prerequisites

4.

Node.js 14.0+: JavaScript runtime

npm or yarn: Package manager

MongoDB Atlas account: Cloud database service (no local MongoDB installation
required)

Express.js 4.0+: Web framework

Setting Up the Development Environment

iOS App Setup

1.

Download and extract the iOS project files to your development machine:

o Extract the BeaconlO iOS project files to a location on your computer
o Navigate to the extracted folder

2. Open the project in Xcode:

o Double-click on the BeaconlO.xcodeproj file

o Alternatively, open Xcode and select "Open..." from the File menu, then navigate

to the project location
3. Configure the development team in Xcode:
o Select the project in the Project Navigator
o Select the BeaconlO target
o Go to the Signing & Capabilities tab
o Select your development team

4. Update the APl base URL in APIService.swift to point to your development server:

swift

Unset

let baseURL = "http://localhost:3948/api”

5. Connect a physical iOS device and build/run the project
Backend Setup

1. Download and extract the backend project files:
o Extract the BeaconlO backend files to a location on your server
o Navigate to the extracted folder using the command line
2. Install dependencies:
bash

Unset

npm install

3. Create a . env file with the following content:

Unset

PORT=3948

MONGO_URI=mongodb+srv://<username>:<password>@<cluster>.mongodb.n

et/beaconio?retryWrites=true&w=majority

Replace <username>, <password>, and <cluster> with your MongoDB Atlas credentials

3. Start the server:

In your console

Unset

npm start

Project Structure

iOS App Structure

The iOS app follows a modular architecture with these main components:

Core Files
File Description
BeaconlOApp.swift Entry point for the application, sets up the environment objects
ContentView.swift Main view controller with tab-based navigation
APIService.swift Handles all APl communication with the backend
BluetoothManager.swift Manages BLE scanning and beacon detection
Models.swift Data models for the API responses
StationData.swift Local models for station information
View Files
File Description
HomeView.swift Main dashboard showing nearby stations and suggestions
StationsView.swift List of all available workout stations
StationDetailView.swift Detailed view of a specific station
WorkoutTrackingView.swift | Interface for tracking workout progress
HistoryView.swift View showing past workout history

File

Description

HomeView.swift

Main dashboard showing nearby stations and suggestions

StationsView.swift

List of all available workout stations

APIView.swift

Admin view for exploring raw API data

Supporting Files

File

Description

BeaconData.swift

Structs for representing beacon data

RadioButtonGroup.swift Custom Ul component for selection controls
TestViewController.swift Test harness for Ul components
Info.plist App configuration including permissions

Backend Structure

The backend follows a standard Express.js structure with routes and models:

Main Files

File

Description

server.js Main entry point that sets up Express and connects to MongoDB

Routes

File

Description

beacons.js

API endpoints for managing beacons

beaconlnUse.js

Endpoints for tracking which beacons are in use

stations.js

Endpoints for managing stations

exercises.js

Endpoints for exercises

stationExercises.js

Endpoints for station-exercise relationships

users.js User management endpoints

activeWorkouts.js Endpoints for tracking in-progress workouts
workoutHistory.js Endpoints for completed workout history
Models

File Description
Beacon.js MongoDB schema for beacons
BeaconinUse.js Schema for tracking beacon usage status
Station.js Schema for workout stations
Exercise.js Schema for exercises

StationExercise.js Schema for mapping stations to exercises

User.js Schema for user data

ActiveWorkout.js Schema for in-progress workouts

WorkoutHistory.js Schema for completed workouts

Key Algorithms and Program Flow

Bluetooth Scanning and Proximity Detection

BeaconlO uses CoreBluetooth to scan for and detect BLE beacons. The key steps in this
process are:

1.

w

Initialize Scanning: BluetoothManager creates a CBCentralManager to manage
Bluetooth operations

Scan for Peripherals: Performs a scan for all nearby BLE devices

Filter Peripherals: Applies name-based filtering to identify BeaconlO beacons
Proximity Calculation: Uses RSSI (Received Signal Strength Indicator) values to
determine distance

Threshold Application: Compares RSSI values against beacon-specific thresholds
from the API

10

swift

Unset

// Core proximity detection logic in BluetoothManager.swift
func centralManager(_ central: CBCentralManager, didDiscover
peripheral: CBPeripheral,

NSNumber) {

advertisementData: [String : Any], rssi RSSI:

// Apply filtering

if shouldIncludeBeacon(peripheral) {

let peripheralName = peripheral.name ?? "Unknown Beacon"
let currentRSSI = RSSI.intValue

$0.name

default

-60

//
if

Update or create beacon
let index = discoveredBeacons.firstIndex(where: {
peripheralName }) {
// Update existing beacon with new RSSI
var updatedBeacon = discoveredBeacons[index]
updatedBeacon.rssi = currentRSSI
discoveredBeacons[index] = updatedBeacon

} else {

// Create new beacon with threshold from API or

let threshold

beaconThresholds[peripheralName] ??

let newBeacon
id: UUID(),
name: peripheralName,
rssi: currentRSSI,
proximityThreshold: threshold

BeaconData(

)

discoveredBeacons.append(newBeacon)

11

Workout Lifecycle
The workout tracking flow follows these stages:

1. Workout Initiation: User starts a workout, creating an ActiveWorkout record
2. Exercise Tracking: User performs exercises, tracking sets, reps, and weights
3. Workout Pausing: User can pause the workout, which updates the status and records
pause time
4. Workout Resumption: User can resume a paused workout, calculating total paused
duration
5. Workout Completion: User completes the workout, which:
o Converts the ActiveWorkout to a WorkoutHistory record
o Calculates total duration (excluding paused time)
o Removes the ActiveWorkout record

JavaScript
// Example: Completing a workout (from activeWorkouts.js)
router.put('/:id/complete’, async (req, res) => {
try {
const { endTime } = req.body;

if (!'endTime) {
return res.status(400).json({ message: 'End time is
required' });

}

const activeWorkout = await
ActiveWorkout.findById(req.params.id);

if (lactiveWorkout) return res.status(404).json({ message:
"Active workout not found' });

// Calculate total workout duration (excluding paused time)
const totalDuration = new Date(endTime) - new
Date(activeWorkout.startTime) - activeWorkout.pausedDuration;

// Create a workout history entry

const workoutHistory = new WorkoutHistory({
userId: activeWorkout.userld,
date: new Date(endTime),

12

1)

startTime: activeWorkout.startTime,
endTime: endTime,
completedStations: [{
stationId: activeWorkout.stationId,
startTime: activeWorkout.startTime,
endTime: endTime,
completedExercises: activeWorkout.completedExercises

A1k

totalDuration: totalDuration

1)
await workoutHistory.save();

// Mark the beacon as not in use

await BeaconInUse.findOneAndUpdate(
{ beaconId: activeWorkout.beaconId },
{ inUse: false },
{ new: true }

)

// Remove the active workout
await activeWorkout.deleteOne();

res.json(workoutHistory);
catch (err) {
res.status(400).json({ message: err.message });

Data Synchronization Flow

The app follows this sequence for data synchronization:

1.
2.
3

Initial Data Load: On app launch, APIService loads cached data from UserDefaults
Data Refresh: The app fetches fresh data from the API

Data Processing: processDataForLocalStorage() combines related data into
user-friendly formats

13

4.
5.

Local Caching: Processed data is cached in UserDefaults for offline access
Incremental Updates: During a workout, exercise data is incrementally updated

14

Data Flow Diagram

The following diagram illustrates how data flows through the system:

Bluetooth Scanning Process

%

Scan for Beacons
CoreBluetooth scans for paripherals

e

Q

Filter by MamefID

Filter for Beaconl(devices

N

&

Calculate Proximity
Compare RS51 values against thresholds

4

APl Service Process

=
o

Fetch Data from API
Retrieve station and exercise data

4

J\f

Process & Combine
Combine related data (e.q., stations and exercises)

v

=2

Cache in UserDefaults
Store for offline wse

N

Ul Layer

U

HomeView
Shows nearby stations

v

&

StationsView
Lists all stations

N2

'AV'

WaorkoutView

Tracks active workout

N

O

HistaryView

Showes workout history

¥

16

API Endpoints

=
| o

Workouts API
Manages active workouts

J

Stations API
Provides station data

Jr

©

History API
Stores workout history

e

(({)

MongoDB Atlas

Cloud database service storing all application data

Key Components in Detail

BluetoothManager
The BluetoothManager is responsible for BLE operations:

Initialization: Sets up the CBCentralManager and registers as a delegate
Scanning Control: Methods to start/stop scanning and toggle filtering
Beacon Processing: Filters and processes discovered peripherals
Proximity Calculation: Determines if a user is within range of a beacon
API Integration: Updates beacon thresholds from API data

Scanning is performed in a background mode to ensure continuous beacon detection even
when the app is not in the foreground.

APIService

The APIService handles all communication with the backend API:

Data Fetching: Methods to retrieve data from various API endpoints

Data Processing: Combines related data (e.g., stations and exercises)
Caching: Stores data locally for offline access

Workout Management: Methods for starting, pausing, resuming, and completing
workouts

Exercise Tracking: Updates exercise data during a workout

The service implements a dispatch group pattern to handle parallel API requests and processes
data only when all requests are complete.

ActiveWorkouts API

The activeWorkouts.js route handles the core workout tracking functionality:

The API also handles potential conflicts, such as multiple users attempting to use the same

Starting Workouts: Creates new workout records and marks beacons as in use
Pausing/Resuming: Updates workout status and calculates paused durations
Exercise Updates: Records completed sets and exercises

Workout Completion: Converts active workouts to history records

station simultaneously.

Development Guidelines

iOS Development

1.

2.

3.

Core Bluetooth Usage:
o Always check centralManager.state before starting a scan

o Use CBCentralManagerScanOptionAllowDuplicatesKey: true for continuous

RSSI updates

o Be mindful of battery consumption during scanning
SwiftUl Best Practices:

o Use environment objects for shared state

o Leverage @Published properties for reactivity

o Follow the MVVM (Model-View-ViewModel) pattern
Error Handling:

o Implement consistent error handling patterns

18

o Always provide fallback data when API requests fail
o Use optional chaining to handle nil values safely

Backend Development

1. API Design:
o Follow RESTful principles
o Use consistent response formats
o Implement proper error handling with appropriate status codes
2. MongoDB Usage:
o Use Atlas Search for complex text queries if needed
o Create Atlas indexes for frequently queried fields
o Use appropriate data types for optimal performance
o Monitor database performance in the Atlas dashboard
3. Security Considerations:
o Sanitize all user inputs
o Implement proper error handling to prevent information leakage
o Plan for future authentication implementation

Testing

iOS App Testing

1. Unit Tests:
o Test core algorithms (proximity calculation, data processing)
o Mock API responses for predictable testing
o Test error handling and recovery

2. Ul Tests:
o Test navigation flows
o Verify input validation
o Test offline functionality

3. Bluetooth Testing:
o Must be tested on physical devices
o Verify beacon detection at various distances
o Test scanning in background mode

Backend Testing

1. API Tests:
o Test each endpoint for successful operations
o Verify error handling with invalid inputs
o Test concurrent operations

2. Integration Tests:

19

o Test the complete workout lifecycle
o Verify data integrity across operations
o Test race conditions and concurrency issues

Deployment

iOS App Deployment

1. TestFlight:
o Build the app with appropriate signing
o Upload to App Store Connect
o Distribute to testers via TestFlight
2. App Store:
o Prepare app metadata and screenshots
o Complete App Review Information
o Submit for App Store Review

Backend Deployment

1. Development Server:
o Use PM2 or similar for process management
o Set up environment variables for configuration
o Ensure your MongoDB Atlas connection string is correctly configured
2. Production Server:
Implement HTTPS using certificates
Set up a reverse proxy (e.g., Nginx)
Configure proper logging and monitoring
Update the MongoDB Atlas IP Access List to include your production server

o O O O

Extending the Application

Adding New Features

1. New API Endpoints:
o Create route file in the backend
o Define MongoDB schema if needed
o Implement CRUD operations
o Add to server.js
2. New Ul Components:
Create Swift file for the view
Add to navigation if needed
Implement API integration
Handle loading states and errors

O O O O

20

3. New Bluetooth Features:
o Update BluetoothManager.swift
o Test extensively with physical beacons
o Consider battery implications

Troubleshooting

Common Issues

1. Bluetooth Detection Problems:
o Verify Bluetooth permissions
o Check beacon battery levels
o Ensure proper beacon naming convention
o Verify RSSI thresholds are appropriate
2. API Connection Issues:
Check network connectivity
Verify baseURL configuration
Verify Info.plist for network permissions
Check that your IP address is allowed in MongoDB Atlas IP Access List
o Verify MongoDB Atlas connection string is correct
3. Data Synchronization Problems:
Verify MongoDB Atlas connection
Check for schema validation errors
Review API error responses
Inspect data format consistency
Check MongoDB Atlas logs in the Atlas dashboard

O O O O

O O O O O

BeaconlO File and Component
Connections

Core Application Structure

BeaconlOApp.swift

e Role: Main entry point for the application

e Contains:
o Initializes BluetoothManager and APIService as environment objects
o Sets up the main ContentView

e Connections:

21

o Provides BluetoothManager to all child views via
.environmentObject(bluetoothManager)
Provides APIService to all child views via .environmentObject(apiService)
Connects BluetoothManager to APIService via
bluetoothManager.setAPIService(apiService)

ContentView.swift

e Role: Main container view with tab-based navigation

e Contains:
o TabView with navigation to HomeView, StationsView, and HistoryView
o Alert handling for Bluetooth errors

e Connections:

References HomeView in the first tab

References StationsView in the second tab

References HistoryView in the third tab

Uses BluetoothManager for error alerts

Uses APIService for data fetching

O O O O O

Core Services

BluetoothManager.swift

¢ Role: Manages Bluetooth beacon scanning and proximity detection
e Contains:
o CoreBluetooth management
o Beacon discovery and filtering
o Proximity calculation logic
e Connections:
Used by ContentView for error handling
Used by HomeView for beacon detection and proximity information
References APIService for getting station data
Contains method getStationDataForBeaconName which calls
apiService.getStationDataForBeaconName

o O O O

APIService.swift

e Role: Handles all APl communication with the backend
e Contains:

Data fetching methods for all backend endpoints
Caching logic using UserDefaults

Data processing and combining

Workout management methods

o O O

O

22

e Connections:
Referenced by HomeView for workout data and suggestions
Referenced by StationsView for station listings
Referenced by HistoryView for workout history
Referenced by WorkoutTrackingView for workout operations
Referenced by BluetoothManager for station data
Contains extensions:
m APIService+History.swift for history-specific methods
m APIService+WorkoutTracking.swift for workout tracking methods

O 0O O O O ©O

Main Views

HomeView.swift

e Role: Main dashboard showing nearby stations and workout suggestions
e Contains:
o Current stations section (stations the user is near)
o Recently paused workouts section
o Suggested next workout section
e Connections:
Uses BluetoothManager to detect nearby beacons
Uses APIService to fetch workout data and suggestions
References WorkoutTrackingView via NavigationLink for starting/resuming
workouts
References StationDetailView in sheets for station information
Contains subviews:
CurrentStationCard for displaying detected stations
m RecentWorkoutCard for showing paused workouts
m SuggestedWorkoutCard for workout recommendations
m RefreshControl for pull-to-refresh functionality

StationsView.swift

e Role: Lists all available workout stations
e Contains:
o Filter controls for station types
o List of stations with details
e Connections:
o Uses APIService to fetch station data
o References StationDetailView via NavigationLink when a station is selected
o Contains subview StationCard for displaying station information

HistoryView.swift

23

e Role: Shows workout history and statistics
e Contains:
o List of past workouts with summary information
o Empty state handling
e Connections:
o Uses APIService to fetch workout history
o References WorkoutDetailView via sheet for showing detailed workout
information
o Contains subviews:
m WorkoutHistoryRow for displaying workout summary
m WorkoutDetailView for detailed workout information

WorkoutTrackingView.swift

e Role: Interface for tracking an active workout
e Contains:
o Timer for workout duration
o Exercise list with sets, reps, and weights
o Workout control buttons (start, pause, resume, finish)

e Connections:
o Uses APIService for workout operations (start, pause, resume, complete)

o Contains subviews:
m WorkoutHeaderView for timer and workout controls
m ExerciseTrackingCard for exercise tracking
m SetRowView for individual set tracking

Detail Views

StationDetailView.swift

e Role: Shows detailed information about a workout station
e Contains:
o Station information (name, equipment, location)
o List of available exercises
o Start workout button
e Connections:
o Can receive data from either:
m LocalStationData (from API) via initializer overload
m StationData (from BluetoothManager) via standard initializer
o References WorkoutTrackingView via NavigationLink for starting a workout
o Used by both HomeView and StationsView

APIView.swift

24

e Role: Admin/debug view for exploring raw API| data
e Contains:
o Tab selector for different data types
o Refresh button for fetching latest data
e Connections:
o Uses APIService directly for data fetching
o Contains subviews:
m StationsListView for raw station data
m BeaconsListView for raw beacon data
m ExercisesListView for raw exercise data

Supporting Files and Models

BeaconData.swift

e Role: Data structure for representing beacon information
e Contains:
o Properties for beacon identification, signal strength, and proximity
o Computed properties for display formatting
e Connections:
o Used by BluetoothManager to store discovered beacons
o Used by HomeView to display beacon information

StationData.swift

e Role: Data structure for station information
e Contains:
o Station details and associated exercises
o Static method for sample data
e Connections:
o Used by BluetoothManager for providing station data
o Used by StationDetailView for displaying station details

Models.swift

e Role: Contains all data models for APl communication
e Contains:
o Structs matching backend data models
o Codable implementations for JSON parsing
e Connections:
o Used by APIService for data serialization/deserialization
o Referenced by most views for type definitions

25

Detailed Connection Map

From ContentView:

— HomeView (via TabView)

— StationsView (via TabView)

— HistoryView (via TabView)

< BluetoothManager (via environmentObject)
«— APIService (via environmentObiject)

From HomeView:

— StationDetailView (via sheet)

— WorkoutTrackingView (via NavigationLink)
«— BluetoothManager (via environmentObject)
«— APIService (via environmentObiject)

From StationsView:

e — StationDetailView (via NavigationLink)
e «— APIService (via environmentObiject)

From HistoryView:

e — WorkoutDetailView (via sheet)
e — APIService (via environmentObject)

From StationDetailView:

e — WorkoutTrackingView (via NavigationLink)
e «— (Receives data from either HomeView or StationsView)

From WorkoutTrackingView:

e «— APIService (via environmentObject)
e «— (Receives data from either HomeView or StationDetailView)

From BluetoothManager:

e — APIService (via reference passed in setAPIService)
e — BeaconData (uses for storing beacon information)

From APIService:

26

e «— Models (uses for data serialization/deserialization)
Data Flow Connections

1. Beacon Detection Flow:

Unset

BeaconDevice - CoreBluetooth - BluetoothManager - HomeView -
StationDetailView

2. Station Browsing Flow:
Unset

APIService - StationsView - StationDetailView -
WorkoutTrackingView

3. Workout Tracking Flow:
Unset

WorkoutTrackingView - APIService - Backend - APIService -
WorkoutTrackingView

4. History Review Flow:

Unset

APIService - HistoryView - WorkoutDetailView

Component Initialization Order

1. BeaconlOApp initializes BluetoothManager and APIService

27

2. ContentView is created with these environment objects

3. The tab views (HomeView, StationsView, HistoryView) receive the environment
objects

APIService fetches initial data on app launch

BluetoothManager begins scanning when HomeView appears

6. Detail views are created as needed when navigating through the app

o &

ViewModifier and Extension Connections

e RefreshControl.swift in HomeView detects pull-to-refresh gestures and triggers data
refresh

Resources

e Blue Charm Beacon Documentation
o https://bluecharmbeacons.com/bc011-ibeacon-multibeacon-quick-start-guide/
o Swift Documentation
o https://swift.org/documentation/
e Core Bluetooth Programming Guide
o https://developer.apple.com/documentation/corebluetooth
e SwiftUl Documentation
o https://developer.apple.com/documentation/swiftui

e Express.js Documentation
o https://expressjs.com/

e MongoDB Atlas Documentation
o https://docs.atlas.mongodb.com/

e MongoDB Node.js Driver
o https://docs.mongodb.com/drivers/node/
e Swift Ul Cheat Sheet
o https://github.com/SimpleBoilerplates/SwiftUl-Cheat-Sheet
e Core Bluetooth Video
o https://www.youtube.com/watch?v=n-fOBwxKSDO
e Startup Video
o https://www.youtube.com/watch?v=nqTcAzPS3oc
e Apple's "Transferring Data Between BLE Devices" Sample Co
o https://developer.apple.com/documentation/corebluetooth/transferring-data-betwe
en-bluetooth-low-energy-devices
e Punch Through's Core Bluetooth Guide
o https://punchthrough.com/core-bluetooth-guide/
e Novel Bits iOS BLE Development Tutorial
o https://novelbits.io/intro-ble-mobile-development-ios/
e GitHub BLE Swift Samples
o https://github.com/shu223/i0S-BLE-Tutorials
o https://github.com/exPHAT/SwiftBluetooth

28

https://bluecharmbeacons.com/bc011-ibeacon-multibeacon-quick-start-guide/
https://swift.org/documentation/
https://developer.apple.com/documentation/corebluetooth
https://developer.apple.com/documentation/swiftui
https://expressjs.com/
https://docs.atlas.mongodb.com/
https://docs.mongodb.com/drivers/node/
https://github.com/SimpleBoilerplates/SwiftUI-Cheat-Sheet
https://www.youtube.com/watch?v=n-f0BwxKSD0
https://www.youtube.com/watch?v=nqTcAzPS3oc
https://developer.apple.com/documentation/corebluetooth/transferring-data-between-bluetooth-low-energy-devices
https://punchthrough.com/core-bluetooth-guide/
https://novelbits.io/intro-ble-mobile-development-ios/

o https://github.com/netguru/BlueSwift
Ray Wenderlich BLE Tutorial

o https://www.kodeco.com/231-core-bluetooth-tutorial-for-ios-heart-rate-monitor
QuickBird Studios Guide on Reading BLE Characteristics

o https://quickbirdstudios.com/blog/read-ble-characteristics-swift/
WWDC Videos on Core Bluetooth

o https://developer.apple.com/videos/play/wwdc2019/901/

29

https://www.kodeco.com/231-core-bluetooth-tutorial-for-ios-heart-rate-monitor
https://quickbirdstudios.com/blog/read-ble-characteristics-swift/
https://developer.apple.com/videos/play/wwdc2019/901/

	
	
	
	
	
	BeaconIO (BeaconFit) Developer Manual
	
	
	
	Overview
	System Architecture
	Architecture Diagram

	
	Development Environment Setup
	iOS App Development Prerequisites
	Backend Development Prerequisites
	Setting Up the Development Environment
	iOS App Setup
	Backend Setup

	Project Structure
	iOS App Structure
	Core Files
	View Files
	Supporting Files

	Backend Structure
	Main Files
	Routes
	Models

	Key Algorithms and Program Flow
	Bluetooth Scanning and Proximity Detection
	
	Workout Lifecycle
	Data Synchronization Flow

	
	Data Flow Diagram
	Key Components in Detail
	BluetoothManager
	APIService
	ActiveWorkouts API

	Development Guidelines
	iOS Development
	Backend Development

	Testing
	iOS App Testing
	Backend Testing

	Deployment
	iOS App Deployment
	Backend Deployment

	Extending the Application
	Adding New Features

	Troubleshooting
	Common Issues

	BeaconIO File and Component Connections
	BeaconIOApp.swift
	ContentView.swift
	Core Services
	BluetoothManager.swift
	APIService.swift

	Main Views
	HomeView.swift
	StationsView.swift
	HistoryView.swift
	WorkoutTrackingView.swift

	Detail Views
	StationDetailView.swift
	APIView.swift

	Supporting Files and Models
	BeaconData.swift
	StationData.swift
	Models.swift

	Detailed Connection Map
	From ContentView:
	From HomeView:
	From StationsView:
	From HistoryView:
	From StationDetailView:
	From WorkoutTrackingView:
	From BluetoothManager:
	From APIService:

	Data Flow Connections
	Component Initialization Order
	ViewModifier and Extension Connections
	Resources

